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Abstract
The identification of dispersion effects is a very important stage in developing robust 
products and processes. Several methods to identify dispersion effects are present in 
statistical and quality engineering literature, especially methods which use 2K or 2K-p 
unreplicated factorial designs, such as Box-Meyer, Harvey, Brenemann-Nair and Bergman-
Hynén methods. In this paper we considered generalizations of these methods for replicated 
experiments, and compare them by Monte Carlo simulations, analyzing sensitivity and 
specificity indicators. We also included joint generalized linear models (joint GLMs) in our 
comparison. The joint GLMs provides an interesting general framework to fit mean and 
variance models and it is recommend for this proposal, but it needs specialized software. 
If the main focus is found only in one or two higher effects, then the Box-Meyer method is 
an efficient and very simple method. When only one non-null dispersion effect is present, 
our simulation showed that the Box-Meyer method is the best, even when compared with 
the joint GLMs. When two non-null dispersion effects are present, the Box-Meyer method 
is biased, but surprisingly our simulation showed that this method works well.

Keywords: robust design engineering, two-level factorial designs, dispersion effects, 
Monte Carlo simulations
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Introduction
Improvement on quality requires a reduction in the variability of the productive process. 

In the robust design, popularized by Taguchi, one tries to identify controllable factors in 

the process, which change the variance of functional characteristics of the product. These 

factors are, whenever possible, allocated in levels, which minimize the variance, thus 

allowing the development of products and processes robust to variations in environmental 

conditions and other noises.

Design and analysis of experiments may be carried out to identify factors which change 

the expected response (location effects) or the variance of the response (dispersion effects). 

The classical process to identify dispersion effects is to carry out replicated designs or 

experiments with planned variations of noise factors simulated in the laboratory. In each 

design point, formed by the combination of levels of controllable factors, a dispersion 

measurement is calculated, such as the sample variance or the signal-to-noise ratio. Then, 

significant dispersion effects are usually identified by analysis of variance or by normal 

probability plot of effects (Wu and Hamada, 2000; Montgomery, 2005).

There is a great interest in the industry for two-level fractional factorial designs with 

K factors and p fractions, usually represented by 2K–p. In these designs, there are n = 2K–p 

design points, and (n – 1) possible (locations or dispersions) effects can be evaluated.
An experimental study might begin with a great number of possible factors. Taking 

into consideration the cost of the experiment and supposing that few factors affect the 
response, it is common to perform an unreplicated 2k or 2k-p factorial design to make a 
screening of factors to identify apparently significant effects. Usually, these methods 
consist of building a location model (or mean model) and the residuals of this model are 
used to identify dispersion effects (see discuss in the next section). However, a more 
sophisticated statistical model may be applicable: the joint generalized linear models (joint 
GLMs). These models address simultaneously the mean and the variance of the response.

This paper considers 2k factorial designs with replications (less than five) and compares 

several dispersion effect identification methods by the normal probability plot approach. 

The comparison study is carried out by Monte Carlo simulations. The simulation design and 

the analysis of their results have been done applying experimental design methodology. 

The methods are evaluated by sensitivity and specificity indicators. Sensitivity is the 

capacity to detect non-null effects; and specificity is the likelihood of you not identifying 

null effects as non-null effects. We hope that the results of our simulations will help the 

researchers to identify some situations where one method is better than others. Based on 

these results, we describe some recommendations to identify dispersion effects.

In follow we present several methods for identifying dispersion effects in experiments. 

Some generalizations for replicated experiments are commented. We developed a simulation 

study to compare the several methods and illustrated them by an example. Finally, we 

summarize our study and describe some recommendations to identify dispersion effects.



Brazilian Journal of Operations & Production Management
Volume 5, Number 2, 2008, pp. 73-91

75

Methods for Replicated Experiments
Consider the experimental data, yij (i = 1, 2,..., n and j = 1, 2,..., m), satisfying the 

following linear model (Equations 1 and 2):
t

ij i i ijy x e= β + σ
 (1)

( )2 t
i ig zσ = θ

 (2)

where β = (β
0, β1, ..., βn-1)t and θ = (θ0, θ1, ..., θn-1)t are unknown parameter vectors; xj

t and 
zi

t are the rows of the design matrices, both with dimensions 1 x n; eij are the experimental 
errors; g is a link function for the variance; n is the number of design points, and m is the 
number of replications. Usually it is assumed that eij are independent and follow a normal 
distribution with mean zero and variance one. The first element of vector θ in (Equation 2) 
is associated with the constant term; and the other ones are the dispersion effects.

When the expectation operator is applied in (Equation 1), the model is called mean or 

location model. Model (Equation 2) is called variance or dispersion model. The g function may 
be an identity, which leads to a linear model, or a logarithmic function, which in turn leads 
to a log-linear model. The lather is more common, since the logarithmic transformation 
produces positive estimates and stabilizes the variance (Bartlett and Kendall, 1946). In a 
log-linear model, one defines the kth dispersion effect as half of the logarithm of the ratio of 
the level coded as +1 and the level coded as  –1.

In replicated experiments (m > 1), it is usual to calculate the sample variance in each 
design point and apply the logarithm over these variances. In a 2K or 2K-p factorial design, 
the least squares method applied in the logarithm of the sample variances results in the 
estimate Ds

k of θk (k = 1, 2,..., n – 1) (Equation 3): 
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(3)

where: s2
i the sample variance in the ith design point (i = 1, 2, ..., n); i(k+) represents runs 

performed on the level coded as +1 of the effect k; and i(k–) performed on the –1 level.
Another estimator of θk is based on the ratio between the arithmetic means of the 

sample variances (Box and Meyer, 1986). It is denoted by (Equation 4):
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Nair and Pregibon (1988) show that the statistics Ds
k is the maximum likelihood 

estimators of θk if the true model is saturated. A model is said to be saturated if all the 
elements of the vector θ are non-null. On the other hand, DR

k is the maximum likelihood 
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estimator of θk if model (2) is restricted (that is, θk is the only non-null element of θ). 

Moreover DR
k is more efficient than Ds

k in the estimation of θk if this is the only non-null 

dispersion effect, but it is a biased estimator when more than one non-null dispersion 

effect exists. As Nair and Pregibon (1988), we refer to the statistics Ds
k and DR

k as the S and 

R methods respectively.

Methods for the Unreplicated Designs
For unreplicated designs (m = 1), the methods to identify dispersion effects are usually 

based on residuals, ri (i = 1, 2, ..., n), of a non-saturated mean model adjusted for the 

observations. However, these methods have the inconvenience of depending on the 

adjusted mean model (see Pan, 1999).

Harvey (1976) proposed to model variance taking logarithms of the squared residuals. 

It has been used to identify dispersion effects in unreplicated experiments (Brenneman 

and Nair, 2001). In 2k or 2k-p factorial design, this method consists of substituting the 

sample variances for squared residuals in Equation 3, which is (Equation 5): 
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Box and Meyer (1986) proposed to identify dispersion effects replacing the arithmetic 

means of the squares residuals in (Equation 4), so (Equation 6):
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To identify the apparently significant dispersion effects, DH
k or DBM

k are usually placed 

on a normal probability plot (Montgomery 2005, p. 241). Bergman and Hynén (1997) 

suggested a modification in Box and Meyer’s statistic to produce the sums of squares of the 

numerator and denominator independent, and consequently the ratio of the mean squares 

must follow an F distribution. They presented several computational ways to calculate this 

statistic, in particular Equation 7:
2
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where (k ) n
2

r ( 1, 2,..., )+ =


  are the residuals of the model built with the observations 

associated to level +1 of the effect k; and similarly (k )r −   are the residuals for the 

observations associated to level –1 of the effect k. Notice that we need to adjust two 
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independent regressions for each effect. The dispersion effect may be identified by F tests 

or placing ( )BH
klog D  on a normal probability plot.

Brenneman and Nair (2001) showed that 
BH
kD  may be biased and does not follow an 

F distribution if more than one dispersion effect is non-null. To reduce this bias, they 

suggested using Bergman and Hynén´s residuals applied in Harvey’s formulation, which 

is (Equation 8):
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Van de Ven (2008) proved that the Brenneman and Nair estimator and two others 

proposed estimators (not present here) are only different representations of a single 

estimator for two-level factorial designs.

Generalizations for eeplicated designs

For replicated designs (m > 1), there are m squared residuals, rij
2 (j = 1, 2, ..., m) in each 

design point i (i = 1, 2, ..., n). Then all four formulas of the statistics Dk, as described in the 

last section, may be rewritten in terms of individual squared residuals, rij
2, or in terms of 

average of the squared residuals in each design point, which is (Equation 9): 
m 2

ij
j 12

i

r

r (i 1, 2,..., n)
m

=
∑

= =
 (9)

In terms of the Box and Meyer’s statistic, the two procedures are arithmetically equal, 

as shown below (Equation 10):
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(10)

The extension of this equivalence for the Bergman and Hynén’s statistic is 

straightforward. However the same kind of equivalence is not true for Harvey’s or 

Brenneman and Nair’s statistics. Mattos (2004) justified by Monte Carlo simulations that it 

is better to use the average of the squared residuals in each design point. If the technique 

is applied directly on individual squared residuals, some squared residuals may be close 

to zero merely by chance (inliers). In this case, the logarithmic transformation causes 
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discrepant values. The inliers are less probable if we use the average of squared residuals 

(see Barbetta et al., 2000).

If we use saturated mean models, then the Box-Meyer´s method and the R method are 

equivalent, that is BM R
k kD D= . Therefore, if we use the average of squared residuals on each 

design point, then H S
k kD D= .

The joint GLMs

The joint generalized linear models (joint GLMs) for mean and variance provides a 

general framework for testing and modeling both location and dispersion effects. The 

model given by (Equation 1 and 2) is a particular case, but an important one of joint GLMs. 

The main advantages of this approach are:

1) use all information of the data, adjusting models for mean and variance 

simultaneously;

2) the models are defined for any design, not only for the 2K or 2K-p factorial design;

3) it is not necessary to transform the response to stabilize variance or to obtain a 

normal distribution of the error terms, since one can consider any probability 

distribution in the exponential family in the GLM (see McCullagh and Nelder,1989); 

and

4) one fit a good model by stepwise methods, as the tests of significance of the 

coefficients are more appropriate than other methods (see Grego, 1993). 

The problem with joint GLMs is that they require more specialized software. In the 

general sense, the identity link function is used for the mean model with normal error. 

In this situation, the natural choice of the variance model is the gamma distribution and 

log link function. The parameters of these models may be estimated by iterative weighted 

least squares (IWLS), using the squares of the standardized residuals as the response 

in the variance model, and the weight least square (WLS) for the mean model (weights 

equal 2
i

1
σ̂ ), 

2
iσ̂  is the predicted variance for the ith design point of the variance model. 

Engel and Huele (1996) show that little iteration usually performs better than complete 

convergence, but there isn’t an ideal number of iterations because it depends on the 

variance heterogeneity and the degrees of freedom in residuals.

Grego (1993) and Pinto and Leon (2006) recommend starting the model with all possible 

locations and dispersion effects (saturated models) and then, the non-significant effects 

removed by backward elimination, first the variance model and then the mean model.

In replicated experiments, Grego (1993) proposed applying joint GLMs on the pair 
2

i i(x , s ), where ix  and 2
is  are respectively the sample mean and sample variance in the 

design point i (i = 1, 2, …, n). But Lee and Nelder (2003) suggested considering the 

individual observations in the joint GLMs. Thereby it is possible to make several model-

checking plots, although both procedures result in the same point estimates of the 

elements of β and θ.
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Monte Carlo simulation study
The comparative studies of the methods previously discussed were carried out by Monte 

Carlo simulations. The study is based on simulated experiments generated by a 24 factorial 
design with two or four replicates on each design point. The coded factors of the simulated 
experiments are denoted by x1, x2, x3 and x4. All samples are simulated considering that 
the location and dispersion effects are described respectively by Equations 1 and 2, where 
the link function of the variance model is the logarithm function, and normal distribution 
error in (Equation 1). For example, one set of simulated experimental data is generated by 
βt = (2, 2, 2, 0, 1, 1, 0, ..., 0) and θt = (0, 0.549, 0, 0.896, 0, …, 0), which is (equations 11 
and 12):

2
ij 1i 2i 3i 1i 2i 1i 3i i ijy 2x 2x 2x x x x x e= + + + + + σ

 (11)

( )2
i 2i 4ilog (0.549)x (0.896)xσ = +

 
(12)

where x1, x2, x3 and x4 are the -1 and +1 coded factors of the 24 design (i = 1, 2, ..., 24 and 
j =1, 2) and eij: N(0, 1). The coefficients 0,549 and 0,896 are the dispersion effects associated 
with the factors x2 and x4, respectively.

The important features to detect dispersion effects are the number of degrees of freedom 
for estimating the variance function, the number of the true non-null dispersion effects 
and the magnitude of the dispersion effects (Engel and Huele, 1996). We considered these 
features in our project of simulation but introduced others for the exploration task. All the 
factors that we used are described in Table 1. 

In the simulation study, two and five location effects (Factor A of Table 1) and one 
and two dispersion effects (Factor C) are considered, since location effect is more common 
than the dispersion effects, so more location effects are considered in the simulation 

Table 1 – Description of factors and levels used in simulation project.
Factor Description Level –1 Level +1

A Number of non-null loca-
tion effects

Two main effects: β1 and β2 Three main effects and two interac-
tions: β1, β2, β3, β12 e β13 

B Magnitude of location ef-
fects.

βi = 1 and βij = 0.5 
for i and j equal to indexes specified 
in factor A. Other elements of β are 
equal to zero.

βi = 2 and βij = 1 
for i and j equal to indexes specified 
in factor A. Other elements of β are 
equal to zero.

C Number of dispersion ef-
fects

θk (one dispersion effect), where k 
= 1 or k =4 (see factor D)

θk and θ2 (two dispersion effects). θ2 
is fixed equal 0.693.

D Coincidence between 
location and dispersion 
effects

θk = θ1
(the simulated factor x1 is associ-
ated with location effect β1, and 
dispersion effect θ1)

θk = θ4
(the simulated factor x4 is associated 
with only a dispersion effects, θ4)

E Magnitude of dispersion 
effects 

θk = 0.549 and θi = 0 
for i ≠ k and i ≠ 2 

θk = 0.896 and θi = 0 
for i ≠ k and i ≠ 2

F Number of replications 2 4
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than the dispersion effects. The Factor E controls the magnitude of dispersion effects. The 
values 0.549 and 0.896 correspond to an increase in variance with a factor three and six, 
respectively. It might be seen by Equation 12: if x2i is zero, the relation between x4i = 1 and 
x4i = –1 produces ratio of the variances equal to six. The choices of the dispersion effects 
for simulation were based on the review of the practical studies and the empirical analysis 
of the power of the procedures to detect significant effects.

Note that each crossing levels of the first five factors of Table 1 produces a different 
specification for mean and variance models. For example, if all factors were put in level 
+1, the sample will be generated by the mean and variance described respectively by 
Equations 11 and 12. The levels of the factors of Table 1 were crossed as a 26-1 fractional 
factorial design. For each one of the 26-1 = 32 design point we generated N = 2,000 samples 
(2,000 results of a 24 design).

The estimates of dispersion effects θk (k = 1, 2, ..., n – 1) for each simulated sample 
were obtained by eight different methods, separated by comparable groups. In the first 
group the residuals are calculated on saturated mean model and we compare the methods: 
S [expression (3)], R [expression (4)], and the joint GLMs (GLM_s). In the second group 
the mean model includes terms according to the simulation specification. For example, 
if the sample was simulated according to expression (11) and (12), the mean model will 
fit only with x1, x2, x3, x1x2 and x1x3 terms. In this group we compare H (Harvey), BM (Box 
and Meyer), BN (Brenemann and Nair) and BH (Bergman and Hynén) methods generalized 
for replicated design [expressions (5), (6), (8) and (7) adapted for average of the squared 
residuals in each design point]. Also, we consider the joint GLMs with the mean and variance 
models specified according to the simulation specification (we denoted it as GLM_t). In all 
of these methods, the estimation process uses only the results of the simulated samples.

For GLM_s and GLM_t, we adopted the IWLS estimation method. As we discussed before, 
Engel and Huele (1996) recommend fixing a small number of iterations to prevent the inlier 
problem. But there isn´t an ideal iteration number for all cases, and then we decided to 
five iterations.

One way to detect significant effect automatically is by Lenth’s method, that estimates 
the (pseudo) standard errors based on robust statistics (see Montgomery, 2005, pp. 234). 
This method had been used in some cases where the main goal is to detect significant effect 
from 2K-p unreplicated design, for example in Schoen (2004). But we choose the traditional 
statistics to sample from normal distribution (the dispersion effects estimates are 
approximately normal distribution). We identify the effect as apparently significant when 
its estimate is two standard deviations apart from the average of all effects estimates.

For each sample generated we estimate θk by the eight methods discussed before. We 
denote by Dk one estimate of θk. For situations where we need to specify the method we will 
use a subscript. As we describe before, the kth effect was considered significant when:

kD D 2S− >
 (13)
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where D  is the average of Dk and S is the standard deviation of Dk (k = 1, 2, …, 2K – 1). 
In both statistics we excluded the two highest absolute values of Dk, because we know by 
simulation models that they might be truly significant, so they are outliers in the set of the 
effects. We think that the process reproduces automatically what a researcher does when 
he (or she) analyses a normal probability plot of the effects. 

Based on N = 2,000 simulated samples we calculated for each one of the 32 design 
points and each of the eight methods, the following:

•	 the	proportion	of	times	in	which	all the non-null dispersion effects were correctly 
identified (an estimate of the probability of correct identification, PCI); and 

•	 the	proportion	of	times	in	which	all the null main or second order dispersion effects 
were identified correctly; in other words, one minus the proportion of times in which 
some null effects were identified incorrectly as significant (one minus the estimate 
of the probability of incorrect identification, 1 - PII).

The PCI and 1 – PII may be interpreted as the sensibility and the specificity of the 
methods, respectively. The higher these two figures the better the methods.

The Simulation Results
Some caution is necessary to compare the results of the simulated experiments, because 

in some methods we use information of the simulation models, and in others we don´t use 
any information. So, we can only compare the R, S and GLM_s methods among themselves, 
since these methods do not use any information from the simulation models, and H, BM, 
BN and BH methods among themselves, since these use the same information from the 
mean model. In GLM_t the true terms of the mean and variance models are used, so the 
results of this method are not comparable with the others, but for the sake of classification 
it is placed in the same group with the H, BM, BN and BH methods.

Table 2 shows the averages for the PCI and for the 1 - PII of each method calculated in 
the 32 design points. 

In Table 2, an interesting result is the supremacy of methods which use the ratio of 
arithmetic (R, BM and BH) means compared to the ones which use geometric means (S, 

Table 2 – Estimates of sensibility (PCI) and specificity (1 – PII) of the methods.
Method PCI 1 - PII 

S (Nair and Pregibon) 0.496 0.516
R (Nair and Pregibon) 0.526 0.554
GLM_s 0.491 0.518
H (Harvey) 0.632 0.542
BM (Box and Meyer) 0.636 0.554
BN (Brenemann and Nair) 0.623 0.551
BH (Bergman and Hynén) 0.626 0.571
GLM_t 0.687 0.553

Standard errors of estimates are less than or equal to 0.011.
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H and BN). Perhaps this happened because the simulated data were generated with one 
and two dispersion effects. Nair and Pregibon (1988) and Brenneman and Nair (2001) 
showed that the R method and their derivates (BM and BH) were appropriate when there 
is only one dispersion effects, however they produce biased estimates when more than one 
dispersion effect are present.

On the other hand, the use of modified residuals (as the BH and BN methods), suggested 
by Bergman and Hynén (1997), and Brennemann and Nair (2001), do not bring relevant 
gains if the identification of the effects is made by a normal probability plot of effects, as 
our simulation approach. We note also that the use of GLM with the saturated mean and 
variance models (GLM_s) performs worse than the simple R method, and approximately 
equal to the simple S method.

Table 2 also shows that the relative complexity in the calculation of dispersion effects 
by methods BH and BN is not compensated by gains in sensitivity (PCI) and specificity 
(1 – PII), even though the use of modified residuals had originally been proposed to 
allow the identification of dispersion effects by formal statistics tests, which is not being 
considered in this study. And the poor performance of the GLM_s (Table 2) is justified 
by the use of the saturated models in the GLM approach as a first part of a more general 
approach: the non-significant effects being removed hierarchically to produce a model in 
that all of the effects are significant.

The second group of estimates (H, BM, BN and BH) presents PCI higher than the first 
group (S, R and GLM_s). This result was expected because in the second group we use only 
the correct terms in the mean model. But the result suggests us that a good practice is 
aggregate the non-significant high order interaction in the error term.

Figures 1 to 5 show the more important interactions between the performance of the 
methods and the factors in Table 1.
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Figure 1 – Comparison of methods of the saturated models by the number of non-null dispersion 
effects. Note: The bars represent the average of the PCI or the 1 – PII, and the markings at the top 
of the bars represent 95% confidence intervals.
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In Figure 1, we see that the R method is better than the S or GLM_s methods when we 
have only one dispersion effect. In this condition, methods BM and BH are also better 
than methods H and BN (Figure 2). In other words, we could say that the generalized 
Box-Meyer method performs better than the generalized Harvey method when we have 
only one dispersion effect. The term “generalized” is because we adapted the methods for 
replicated experiments.

With two dispersion effects, the methods showed slight differences. For the saturated 
models (Figure 1), the differences are not significant. Therefore, when we use the correct 
terms of the mean model (Figure 2), the H and BH methods are slightly better than the BM 
and BH methods.

In previous studies, this interaction had already been partially explored. Nair and 
Pregibon (1988) showed that the R method was more efficient in the presence of only 
one dispersion effect, but not adequate to identify more than one dispersion effect. In 
unreplicated experiments with two or more dispersion effects, methods BM and BH have 
structural bias, in other words, the calculation of effects, even in theory (with model 
parameters), does not make it possible to isolate the real effects, thus leading to an 
erroneous identification of inexistent effects (see Brenneman and Nair, 2001). However, 
in our simulation (for experiments with two and four replications), we note that these 
methods still perform well in the presence of two dispersion effects.

The interaction plots between methods and number of replications are shown in 
Figures 3 and 4. We note that the R method performs better than the S and GLM_s when we 
have only two replicates (Figure 3). Similarly, the BM and the BH methods perform better 
with two replicates (Figure 4). When we use four replications, the differences between the 
methods are very small. Thus, the generalized Box-Meyer method performs better than 
that of the generalized Harvey method when we have fewer replications.
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Figure 2 – Methods where we assume the true terms in the mean model by different number of 
non-null dispersion effects.
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Finally, the simulated experiment showed that the sensitivity of the simple H and BM 
methods are worse when there are coincidences between the locations and the dispersions 
effects. This does not happen with more elaborate methods (BN, BH and GLM_t) (Figure 5). 
However, this interaction was not significant with the methods based on saturated models 
or in the analysis of specificity.

Application Example
We use an experiment of the compression strength of concrete described in Mattos 

(2004) to illustrate the dispersion effects identification methods. The original purpose of 
this experiment was to study the compressive strength of concrete containing the addition 
of rice husk ash, but here we only use it to discuss the application of the methods. 

The concrete is obtained from a designed mix of cement, water, aggregate and, if 
necessary, add mixtures and other additions. The type of structure being built as well 
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Figure 3 – Comparison of methods of the saturated models by the number of replications.
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Figure 4 – Methods where we assume the true terms in the mean model for different number of 
replications.
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as the method of construction determines how the concrete is placed and therefore 
the composition of the concrete mix. The concrete quality is appraised for engineering 
properties of fully cured concrete and how it performs as a structural material.

Table 3 presents the levels of the five factors, which were crossed to perform a 25 factorial 
design. For each design point we observed the compressive strength of three samples of 
concrete. Note that we didn´t have three genuine replications, because we didn´t repeat 
all the process. So, in this experiment the variance of replications can be lesser than the 
true variance of the experimental error. Table 4 presents the responses.

The least square estimates of the location effects results in several terms highly 
significant as the main effects: A, D and E, and the interactions: AE, BCD and ABCD. 
The Figure 6b presents the location effects in a normal probability plot. The presence 
of the high-order interaction produces a quite complex mean model, and the use of 
transformations, as a Box-Cox approach (Montgomery, 2005, pp. 32), did not improve the 
results satisfactorily.

We estimated the dispersion effects based on the variance in the replications, or 
equivalently, based on the residuals of the saturated model. The S and R methods are 
shown in Figures 6b and 6c. Both methods suggest only the main effect A as apparently 
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Figure 5 – Interaction plot between the methods and the level of coincidence of location and disper-
sion effects.

Table 3 - Description of the factors and levels used in the experiment.
Factors Description Coded level

-1 +1
A Water-blinder ratio 0.35 0.60
B Addition (%) 0 10
C Time of mixture (seconds) 100 300
D Compaction mechanical by hand
E Age (days) 3 28
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significant. The generalized Harvey and Box-Meyer methods produce normal plots quite 

similar (not presented here). The last two methods are built based on the residuals of the 

mean model with only apparently significant terms. Figure 6d presents the dispersion 

effects estimated from joint GLMs approach and the result looks quite similar. In joint 

GLMs we also used the saturated mean model because it is the common practice to detect 

dispersion effects.

In practice, it is interesting to have different factors with location and dispersion 

effects, because in this situation you can make independent adjustment of the mean 

and the variance of the process – the separability principle; see Box (1988) and Lee and 

Nelder (2003). But the factor A has both location and dispersion effects. The negative 

dispersion effect indicates that water-blinder ratio at 0.60 (coded level +1 of factor A) 

shrinks the variance of the compressive strength. But the negative location effect of this 

factor indicates that water-blinder ratio at 0.60 produces a lower mean of the compressive 

strength than at 0.35.

The main issue of our article is the dispersion effects’ identification problem, but 

usually the researchers intend to build means and variance model. For this purpose the 

joint GLMs approach provides an interesting general framework. Following Grego (1993), 

Lesperance and Park (2003), and Pinto and Leon (2006) we start with a saturated model 

for both mean and variance, obtaining an appropriate model for the variance through 

backward procedures, then obtaining an appropriate model for the mean, again through 

backward procedures. The saturated model of the mean extracts all mean influence from 

the residuals. Therefore a model of variance with only high significant terms is better. 

Table 4 – The design and data of the concrete experiment.
Run A B C D E Y1 Y2 Y3 Run A B C D E Y1 Y2 Y3

1 –1 –1 –1 –1 –1 57.30 55.90 58.94 17 1 –1 –1 –1 –1 27.50 32.47 34.82
2 –1 –1 –1 –1 1 65.57 60.10 54.11 18 1 –1 –1 –1 1 38.20 38.20 37.56
3 –1 –1 –1 1 –1 48.38 50.93 54.75 19 1 –1 –1 1 –1 28.65 26.36 26.10
4 –1 –1 –1 1 1 52.33 54.37 40.74 20 1 –1 –1 1 1 33.23 35.01 35.65
5 –1 –1 1 –1 –1 53.35 49.85 45.45 21 1 –1 1 –1 –1 32.78 27.88 29.92
6 –1 –1 1 –1 1 62.71 38.71 59.21 22 1 –1 1 –1 1 35.90 41.51 36.16
7 –1 –1 1 1 –1 45.20 45.58 56.34 23 1 –1 1 1 –1 26.10 29.28 26.35
8 –1 –1 1 1 1 60.73 48.06 54.75 24 1 –1 1 1 1 35.01 37.30 37.69
9 –1 1 –1 –1 –1 56.79 56.53 53.35 25 1 1 –1 –1 –1 28.52 31.07 26.10

10 –1 1 –1 –1 1 49.53 55.39 46.47 26 1 1 –1 –1 1 37.56 32.47 35.20
11 –1 1 –1 1 –1 52.71 48.38 51.95 27 1 1 –1 1 –1 23.94 22.92 26.74
12 –1 1 –1 1 1 57.61 40.87 60.35 28 1 1 –1 1 1 27.69 31.83 25.21
13 –1 1 1 –1 –1 60.03 57.04 56.66 29 1 1 1 –1 –1 27.76 32.72 32.59
14 –1 1 1 –1 1 66.84 60.81 62.39 30 1 1 1 –1 1 34.12 34.06 39.98
15 –1 1 1 1 –1 46.60 44.56 53.99 31 1 1 1 1 –1 31.19 28.65 26.86
16 –1 1 1 1 1 40.74 43.42 43.29 32 1 1 1 1 1 36.61 35.65 33.74
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Figure 6 – Normal probability plot of location and dispersion effects.
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Iterating with estimated weights is only efficient for IWLS estimates under large-variance 

heterogeneity with weights that are estimated accurately (Engel and Huele, 1996).

First, we verified that all three or higher interactions were not significant in variance 

model through joint GLMs approach (by the difference of deviance test). Then we identify 

the significant effects: A (p < 0.0001), E (p < 0.05) and the interaction A*E (p < 0.05). 

Notice that the highest significant effect is the same as what we observe in simple R and 

S methods. Using IWLS with weights given by variance model, we built a mean model. 

Again we test if all three or higher interactions may be excluded. Then we test each term 

hierarchically, obtaining the significant terms (p < 0.05): A, B, D, E, A*C, B*E, B*C. For 

the marginality rule, namely when an interaction term is significant all related lower-order 

interaction and main effects should be included in the model (Lee and Nelder, 2003), then 

we included the main effect C in the mean model. Notice that the joint GLMs approach 

produces a simpler and more interpretable model (without high-order interactions) than 

the least square approach.

Conclusions
Nair and Pregibon (1988) and Brenneman and Nair (2001) showed that the R method 

(or Box and Meyer´s method for unreplicated experiments) produces a great bias in the 

presence of more than one dispersion effect, but our simulation study showed that this 

method, for replicated experiments, has the highest sensibility and the highest specificity 

when the process has only one non-null dispersion effect. Therefore, we showed that the 

generalized Box-Meyer method (as we call it) performs as well as the generalized Harvey 

method, or the joint GLMs with saturated models, when the processes have two non-null 

dispersion effects. Therefore, when we suspect only one or two dispersion effects, we 

suggest considering primarily the generalized Box-Meyer method. Also, it is apparently 

better to fit mean model with the non-significant high-order interaction aggregated in the 

error term instead of considering a saturated mean model.

The joint generalized linear models for mean and variance provides a general framework 

for testing and modeling both location and dispersion effects. The statistical properties of 

this method suggest that it should be better than other methods previously discussed. 

However, the generalized Box-Meyer or Harvey methods can be made with simple 

spreadsheet software, while the joint GLM needs more specialized computation software. 

Therefore, when we use joint GLM with saturated models as the first step of the backward 

regression, our simulation showed that it does not always performs better than the R 

or S method. Then, even in the GLM approach, the normal probability plot with effects 

estimated by generalized Box-Meyer or R method can be helpful.

The main computational programs in this work were made in IML/SAS and can be 

downloaded at www.inf.ufsc.br/~barbetta/DispersionEffects.htm.
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