The Power of Multivariate Statistical Process Control

> Susan Albin Rutgers University

ICIEOM, Fortaleza Brazil October 2006

Outline of Talk

- Intro to statistical process control
- Multivariate statistical process control -How do we handle so many variables at the same time?
- The power of MSPC
 - Start-up in medical devices
 - Selecting process settings in steel manufacturing

Statistical Process Control One Variable

- Monitor process or product variable SPC Charts
- Shewhart 1920s
- Sample every hour
- Plot sample average and range

Statistical Process Control: Two Phases

• I MODEL:

- Collect baseline data during good production

– Confirm stationary, find mean and sd

• II MONITOR:

Stop production
 points fall outside
 limits

Basic Idea of Process Control

Monitor

Monitor current process data Is it consistent with baseline?

If not, take action

What if there are Multiple Product & Process Variables?

- Process variables (100s)
 - temperatures, pressures, speeds
 - collected by sensors, stored in IT systems

Variables

Correlated

- Excellent for monitoring
- Product variables (10s)

 diameter, tensile strength
 available but with delay

Why not monitor Process Variables One-at-a-Time?

Power of Multivariate Process Control

Model and monitor the <u>relationships</u> among variables

What Does Baseline Data Look Like?

Multivariate SPC Requires Xs and Ys Synchronized

Commonly Available

Necessary for MSPC

Process	Time	Variable	Value
	4:00	Moisture in dough	••••
	4:00	Oven temp Chamber 1	••••
	4:00	Oven temp Chamber 6	• • • • • • •
Product	4:00	Cookie height	••••

Time	Variable	Value
4:00	Moisture in dough	••••
4:21	Oven temp Chamber 1	
4:26	Oven temp Chamber 6	••••
4:32	Cookie height	•••••

PLS, a Multivariate Statistical Model

• PLS

partial least squares regressionprojection to latent structures

- Reduces dimensionality
- Emphasizes process variables that really affect product

What Does the PLS Model Look Like?

• PLS Components, Ts, are linear functions of process variables – coordinate translation

$$T_{1} = w_{11}X_{1} + w_{12}X_{2} + w_{13}X_{3}\cdots$$
$$T_{2} = w_{21}X_{1} + w_{22}X_{2} + w_{23}X_{3}\cdots$$
$$T_{3} = w_{31}X_{1} + w_{32}X_{2} + w_{33}X_{3}\cdots$$

Many process variables, XS

Select weights to emphasize process variables that are important to product outcomes

PLS Considers Both Process & Product Variables

- PLS Components, Ts

 In terms of process variables, Xs
 Collected frequently ⇒ available

 YET...
- Capture information about the *Y*s

 PLS components capture correlation between *X*s and *Y*s

Construct PLS Components, *T*'s, with Optimization

 $T_1 = w_1 X_1 + w_2 X_2 + w_3 X_3 + \cdots$ $U_1 = c_1 Y_1 + c_2 Y_2 + c_3 Y_3 + \cdots$

- For T_1 solve for *w*'s and *c*'s (normalized): Objective function: Max $Cov(T_1, U_1)$
- For T₂ solve for w's and c's: Objective function: Max $Cov(T_2, U_2)$ s.t. $T_2 \perp T_1$

Nipals algorithm, SAS, S^{+,} PLS Toolbox (with MATLAB), Umetrics - Simca

- Model reduces data dimension: $(x_1,x_2) \Rightarrow t_1$
- Which line? maximize correlation between t₁ and product variables

Monitoring: SPE Measures Distance Between New Point & Baseline

Squared Prediction Error, SPE

--SPE too big!

--Process vars not consistent with baseline

--Product vars may not be acceptable

 X_1

Monitoring: *T*² Measures Distance Between New Point & Baseline Center

 T^2 , Dist² from point to baseline center

--T² too big! (SPE=0)

--Process vars inconsistent with baseline

--Product vars may not be acceptable

How to Calculate SPE

- Baseline Results
 - Weights calculate Ts from Xs
 - Loadings calculate Xs (many) from Ts (few)
- Production
 - observe x's & calculate t's
 - Find predicted Xs
 - compute SPE, distance
 between observed & predicted

$$SPE = \sum_{i=1}^{n} (x_i - \hat{x}_i)^2$$

$$X_2$$

Δ

The Power of MSPC

MSPC allows you to see relationships among variables

....and enables you to tell engineering and plant experts something new about their own system

Filament Extrusion Process

Startup is a Problem!

25 Process variables - data every few minutes 12 Product variables - every few hours with delay

Traditional Batch Startup: Iterative & Focuses on Variables One-at-a-time

Why Different Settings for Different Batches?

• Raw materials - all in spec, but different

Long time interval between batches

 environment & maintenance changes

SPE for One Batch: Startup + Production

 Initial setting inconsistent with baseline PLS model (in spec but doesn't work)
 No need to wait for test results of product samples

New Methodology to Reduce Start-up

combines

 operator input
 optimization
 multivariate statistics – PLS

MSPC Operator-Assisted Startup System

Initialize batch at "average" baseline settings

no

ves

Does batch run well?

Operator and System determine which variables to adjust & how much

Start Production

MSPC & Operator Work Together

Adjust v5

Adjust v5 or v8?

No input

Set v5=xx.x Also, V6=yy.y V9=zz.z

Mathematical Optimization To Select New Process Settings

• Objective: minimize SPE

- Constraints:
 - Consistent with baseline model
 Plant operation constraints
 Not too far from current settings

Mathematical Optimization: Solve for New Process Settings

• Objective Function – Minimize SPE

• Subject to: – constraints

$$s_{j}^{a} = u$$

$$z_{i} = 0 \text{ or } 1 \quad i = 1...k$$

$$|s_{i}^{c} - s_{i}^{a}| \leq Mz_{i} = 1...k$$

$$M \text{ large}$$

$$\sum_{i=1}^{k} z_{i} \leq L$$

$$x^{a} = g(s^{a})$$

$$t_{i} = w_{i}x^{a} \quad i = 1...A$$

$$|t_{i}| \leq r \quad i = 1...A$$

Plant Operation Constraints – Engineering Sense

- New settings within allowable range
- Limit the size of adjustments
- Limit the number of variables adjusted

 Introduces 0-1 variables into the
 mathematical optimization

Mixed Integer Quadratic Program

- Mixed decision variables
 - 0-1 variables in constraint limiting no. of adjustments
 - continuous process settings
- Objective function is convex quadratic
- Linear constraints
- Solve with Bender's Algorithm or Search

Operator Inputs Variable to Adjust & MSPC Selects Settings

- Historical
 - t=40: adjust v1 and v2
 - t=100: adjust v3
 - t=150: adjust v3 & production!
- With MSPC algorithm
 - t=40: input v2
 - output v1, v2, & v3
 - t=50: production!

Startup reduced 67% from 150 to 50 mins

Operator Considers 2 Adjustments & MSPC Selects

-t=40:

- Historical
- -t=60: adjust v4, v5, v6

adjust v7

- -t=210: adjust v5, v6
- -t=240: adjust v5, v6
- -t=330: adjust v5, v6
- -t=360: adjust v7 (start) & production
- With MSPC algorithm
 - -t=40: input v4 OR v7 output v4, v5, v6
 - -t=50: production!

Startup reduced 86% from 360 to 50 mins

MSPC Suggests Adjustments with No Prompt From Operator

- Historical
 - t=190: adjust v8
 - t=250: adjust v9 & production
- With MSPC algorithm

 t=120: SPE is large output v8, v9
 t=130: production!

Startup reduced 48% from 250 to 130 mins

Benefits of Reduced Mean and Variance of Batch Startup Time

- reduce start-up time 40%
- improve production planning
- increase capacity
- ease bottleneck off-line testing
- reduce scrap

The Power of MSPC

Select Optimal Process Settings in Steel Manufacturing

Find Process Settings to Optimize Quality

- Magnetic steel sheets, 1432 observations
 - One major product variable
 - Seven major process variables
- Premium price if product quality < C*

 currently 12% of sheets
- Goal: find settings to minimize product var

Data Mining + PLS Work Together

PLS Model ---Reduces dimensionality ---Independent PLS comps

Data Mining Rule Induction Method

---Identifies best process settings---Without constructing explicit quality function---Must use PLS first!

Data Mining Rule Induction Method Finds Best Settings

New Settings Yield Improvement in Steel Sheet Production

 Reduced product quality variable by 8% (lower the better)

Increase in sheets sold at premium price:
 12% => 25%

The Power of MSPC

Model relationships among multiple, correlated process and product variables

Reduce Start-up Time

Monitor Production

Optimize Process Settings

Adjust Process Variables

Baseline Modeling: Why Use PLS Rather Than Multiple Regression?

 Use baseline to construct multiple regression model for prediction Y=f(x)

 Choose process settings X to maximize probability product variables Y within specs

Polystyrene Extrusion Simulation: PLS vs. Regression

- 7 process variables
- 8 productivity variables

Optimal Setting	PLS	Regression
Flow rate (kg/hr)	67.0	68.9
Screw speed (rpm)	105.3	116.3
Barrel temperature	200	212.6
% successful	93%	60%
simulations		

9000 Simulation Runs

