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Abstract :  The quality of several industrial products can only be fully measured through sensory
evaluation of some of its properties. That is particularly true in the food and pharmaceutical industry,
where product development technicians are often faced with the task of collecting and processing data
from sensory evaluation panels. In this paper we propose a new method for sensory data collection and
analysis. Our method presents two important features that may appeal to the product development
practitioner: (i) reliable sensory panel data may be elicited from untrained panelists, and (ii ) a
consistency index which objectively measures how well panelists perform sensory evaluations is
determined for each panel member. The method we propose is applied in a case study from the food
industry.
Keywords : Indirect pairwise comparison method, sensory evaluation, product development.

1. Introduction

Sensory evaluation methods offer an organized way to collect information on sensory aspects of samples as
perceived by the human senses. These methods are applied in product development and reformulation, on-line
and off-line quality control, and for marketing purposes (monitoring competition, for example).
Samples evaluated in sensory panels correspond to different outcomes of an experiment, i.e., different
formulations of a product, manufacturing setups, and so forth. Ideally, sensory evaluation results should allow
the analyst to relate the factors varied when preparing samples to their corresponding sensory impact. In other
words, results are transformed into mathematical models used to predict sensory outcomes according to the
combination of factors chosen when preparing samples. Such models may only be determined when sensory
evaluation of samples yields quantitative data, one or more measurement per sample.
In this paper, we propose Indirect Pairwise Comparison (IPC) method for sensory data collection and
analysis. Our method is based on a family of psychophysical scaling methods introduced in the 50’s
(STEVENS, 1957), and usually denoted by magnitude estimation (ME). Originally, ME was used to
determine mathematical relationships between physical intensities of an attribute and corresponding
subjective intensities, as perceived by panelists. Although mostly applied in psychophysical studies, ME is
also reportedly efficient when used in the sensory evaluation of products (see, LEIGHT & WARREN, 1988).
We use the central idea of ME in the IPC method: measuring the intensity of an attribute as perceived from
different samples using ratios (i.e., describing the intensity of pairs of samples using a ratio of intensities). We
also incorporate to our method the use of graphic rating scales to measure responses, as suggested in
Quantitative Descriptive Analysis techniques (MEILGAARD et al., 1991). Data analysis in our method uses
analytic tools from SAATY’s (1977) Analytic Hierarchy Process, a methodology used in decision making for
selecting the best among a set of alternatives, given some criteria.
The key idea to the IPC method is to quantitatively evaluate the intensity of sensory attributes in samples by
comparing them to a control element. We present the panelist to the entire group of N samples, one of which
is identified as the control element. The panelist is asked to evaluate samples regarding the intensity of a given
attribute, recording evaluation results on a printed scale. Intensities as perceived in the samples are marked on
the scale according to their relation to the control element: the center of the scale corresponds to a sample with
intensity identical to the control element and the extremes correspond to samples with intensities much



2

weaker or much stronger than the control element; intermediate scale points denote compromise situations.
We then change the control element and ask the panelist to perform the evaluations once again. Each sample
in the group will be the control element at its turn. After the data collection is complete, N printed scales will
be at hand, one per control element.
Scale marks are then converted into numerical values reflecting the results of comparing each sample against
the control element. We create an (N x N) square matrix with rows labeled 1 to N, each corresponding to a
control element, and entries aij giving the result of comparing sample j against control element i. We call this
matrix the panelist’s judgement matrix. The numerical results from each of the N scales are then written onto
the judgement matrix, in their appropriate rows. There will be one judgement matrix per panelist.
Through algebraic manipulation we extract the following information from a judgement matrix: (i) a weight
vector giving the intensity ranking of the samples, and (ii) a performance measure for the subject, the
consistency ratio. The consistency ratio describes to what extent transitivity is respected when several samples
are evaluated simultaneously by a subject. For example, samples a and b are compared in intensity with
control element c; if a = 2c, and b = 2c, then transitivity is respected if a = b. These calculations are detailed in
section 3.
Similar to Quantitative Descriptive Analysis and magnitude estimation techniques, the IPC method yields
quantitative data on the samples, which can be used for model building purposes. Our method, however, has
the advantage of being able to measure the efficiency of panelists through their consistency ratios. Using this
information, the panel leader is able to assess the effectiveness of training practices on panelists, or to combine
evaluations from different subjects using their consistency scores as weights.
The IPC method also presents a major advantage when compared to standard magnitude estimation
procedures: samples are assigned to positions on a scale instead of evaluated using numbers. Panelists are
known to perform better when asked to match intensities with positions on a scale, rather than numbers
(STONE et al., 1974). Panelists denote intensities by measuring distances in the scale, intuitively comparing
ratios of distances even without being instructed to do it.
In the IPC method, we are likely to observe less inconsistency in evaluations, since all samples are available at
once for comparison. In addition, our test procedure like those in magnitude estimation does not require
intensive training of panelists. IPC’s major drawback is the fatigue imposed on panelists by simultaneous
presentation of samples, leading to more evaluation sessions and higher data collection costs. In fact, any
sensory data collection method deals with this same problem. The gain in consistency, however, seems to
outdo this limitation.
The rest of this paper contains the sensory data collection procedure we suggest (section 2) and how to
analyze the collected data (section 3).  A case example from the food industry where the method is applied is
presented in section 4. A conclusion closes the paper in section 5.

2. Data Collection Procedure

The IPC method is applied as follows: intensity of an attribute is to be evaluated by a given number of
panelists. Panelists must be able to identify the attribute under study and be trained to assign numbers to
stimuli corresponding to their intensity (for training procedures, see AMERINE et al., 1965; STONE et al.,
1974; and MOSKOWITZ, 1977).
Organize samples in a judgement matrix, like the one presented in Table 1. At each row of the matrix all
samples are compared with respect to the sample corresponding to the row label n,  n = 1,...,N, and each row
constitutes a separate test. A total of N tests is to be performed, and more than one evaluation session is likely
to be needed. At each test, all N samples are exposed at once, and the one corresponding to the row label is
identified as the control element. Subjects are instructed as follows: “You will be presented with a group of
samples, one of them identified as the control element. Your task is to tell how intense they appear to you in
comparison with the control. The intensity of the control sample corresponds to the center of the scale in front
of you. Samples that are more intense than the control must have their codes marked on the right-hand side of
the scale accordingly, and those less intense than the control on the left-hand side. When two samples appear
to be equally intense, write their codes at the same spot on the scale.”
Samples must be coded appropriately (for coding procedures, see AMERINE et al., 1965). The subject is
given a printed scale, like the top scale in Fig. 1. We suggest the use of a 15 cm-long line, with three (or five)
marks equally distanced from each other. These measures should be taken as suggestions. Empirical evidence
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gathered by STONE et al. (1974) points to a higher sensitivity in results when a 15 cm scale is used in
evaluating attributes of a single sample. As the number of samples increases (> 6), a larger scale may be more
convenient.
The use of printed marks as “anchors” to the evaluation is common practice in sensory tests, and tend to
reduce the bias introduced by the use of numbers; STONE & SIEDEL (1993). However, if subjects are
comfortable with numbers, they may be assigned to the center and end marks of the scale. We use
descriptions instead of numbers. Subjects are instructed to place the code corresponding to each sample with a
mark on the scale, according to the perceived intensity of the sample attribute (see bottom scale in Fig. 1).
Their evaluations are later converted into numerical values, ranging from 1/9 to 9, which are written in the
rows of the judgement matrix. Two estimates of each entry aij of the judgement matrix will be available (aij

and 1/aji).
1 2 Λ N

1 1 a12 Λ a1N

2 1/a12 1 Λ a2N

Μ Μ Μ Ο Μ
N 1/a1N 1/a2N Λ 1

Table 1.  Judgement matrix.

Figure 1.  Examples of 15 cm scales (arrows refer to sample codes).

Each subject performs N tests, one printed scale resulting from each test. Consider subject k. After performing
all N tests, we must convert the resulting printed scales into numerical values in a [1/9, 9]-scale, and write them
onto the rows of subject k’s judgement matrix. This is how to convert marks on a printed scale into numerical
values. For a point z units to the left of the center of the printed scale, the element in row i and column j,  j =
1…N,  i≠j, expressed in the [1/9, 9] scale is

( ) 1/8 += szaij , (1)

where s is half of the length of the printed scale. For a point z units to the right of the center of the printed
scale, the [1/9, 9] scale value is

( )[ ] 11/8 −+= szaij (2)

Note that a judgement matrix will contain two comparisons for samples i and j, namely, aij and 1/aji; these
comparisons are likely to be non-identical. To overcome that problem, calculate midpoint values of aij and
1/aji and make the unique resulting value equals aij; the final corrected judgment matrix will be obtained by
forcing reciprocity along the main diagonal.
By changing the control element at each test, there may be situations where all samples are more (or less)
intense than the control. ENGEN & LEVY (1955) reported a very small influence of the position of the
control element on test results when samples of various intensities are compared. A very moderate tendency
to overestimate high intensity samples was detected when the control was the least intense sample; the reverse
situation also was noticed. The overall effect, however, was minor.
The number of samples in a test should ideally be less than 10, but this number varies with the type of
attribute being evaluated. A guide table is given in Tab. 2. In that table, absolute evaluations refer to individual
(one at a time) evaluation of samples, while relative evaluations refer to tests where samples are evaluated
against a control.

Much less
intense

Much less
intense

Less Intense

Identical to
control

Identical to
control

More
intense

Much more
intense

Much more
intense
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The data collection procedure above may be adapted to reduce the number of tests required to obtain
judgement matrices. For an N × N judgement matrix, for example, N tests are required, which may be
economically infeasible in many cases. The procedure below may reduce considerably the number of tests.
From a given judgement matrix row we may obtain the remaining matrix entries using two identities:

aij = 1/aji (3)
aij = ail × alj, for any samples i, j and l.

The resulting matrix is perfectly consistent. From the N tests needed to fill out a judgement matrix, choose M
tests, where M << N. For example, from a total of (N =) 10 tests, choose (M =) 3 to be actually performed by
panelists. We want to evaluate samples regarding their intensity of a given attribute. To properly choose M out
of N possible tests, review samples to roughly identify their attribute intensity. Then choose samples with
attribute intensities evenly distributed along the intensity scale to be the control samples in each test. For
example, when M = 3 tests are to be performed out of N = 10, choose the first control sample to have a low
intensity, the second control sample to have an intermediate intensity, and the third control sample to have a
strong intensity of the attribute under study.

Sense Stimulated Absolute Evaluations
Number of Samples

Relative Evaluations
Number of Samples

Taste 4-6 6-8
Sight 7-9 6-10
Smell - 8-13

Hearing 4-8 6-10

Sources: ERIKSEN & HAKE (1955), GARNER (1953), JACOBS & MOSKOWITZ (1988), LEIGHT &
WARREN (1988), MOSKOWITZ (1970, 1971, 1977), POLLACK (1953), POLLACK & FICKS (1954),
REYNOLDS & STEVENS (1960).

Table 2.   Number of stimuli usually presented to subjects performing absolute and relative
evaluations.

Suppose panelist k performs M (<< N) sensory tests. Write the results from each test in M separate matrices;
each matrix will have a single row with numbers. To fill out the remaining matrices’ rows, use the identities in
eqn. (1). If k is perfectly consistent, the M resulting matrices will be identical. Otherwise, a matrix of
intermediate judgements may be determined calculating the midpoint of the M outcomes obtained from each
matrix. For example, suppose the comparison between samples 1 and 3 (a13) yields three distinct numbers:
1.2, 2 and 1/1.8; the resulting midpoint is 1/1.1. The matrix of midpoints is then used for determining a weight
vector giving the intensity ranking of the samples according to panelist k, as well as the panelist’s consistency
measure.

3. Data Analysis

We now introduce the basic notation and analytical tools to be used in the IPC method. We describe two
analytical tools: calculation of (i) weight vectors and (ii) consistency ratios. These tools were originally
conceived by SAATY (1977), and are explained next.
A weight vector is a vector of intensity weights, each corresponding to a sample in a judgement matrix; from
the weights, a scoring of samples may be determined. Consistency ratios describe to what extent transitivity is
respected when several samples are evaluated pairwise. Both weight vectors and consistency ratios are
calculated from judgement matrices. As noted previously, after sensory data collection at least two estimates
of each evaluation are available. When all N tests are performed, exactly two estimates are obtained, aij and
1/aij; when M tests are performed, M estimates are obtained. Weight vectors and consistency ratios can only
be determined from reciprocal matrices, i.e., matrices where aij = 1/ aji for all i and j. A judgement matrix can
be made reciprocal by calculating the midpoint of entries Κ,, )2()1(

ijij aa , for all i and j, and forcing reciprocity.

We denote a reciprocal matrix of midpoints obtained from panelist k’s evaluations by kpA , where p denotes

the response or sensory attribute under evaluation; the calculation of weight vectors and consistency ratios
outlined next are performed on these matrices.
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3.1 Weight vectors

We want to calculate a weight vector for each matrix of midpoints kpA . The weight vector of kpA  is denoted

by wkp = [w1p, w2p, ..., wNp].  SAATY (1977) shows that the weight vector corresponds to the matrix principal
eigenvector. Whenever we evaluate a sample j against a control i we are indeed estimating the ratio of their
intensity weights, i.e., aij = ji ww . The eigenvector gives the values of wi and wj, given the estimates aij. Let

λmax denote the largest eigenvalue of a matrix kpA . Its principal eigenvector wk is given by (STRANG, 1988):

kpA .wkp = λmax.wkp. (4)

3.2 Consistency ratios
For a judgement matrix to be consistent  aij = wi / wj, and aij = 1 / aji must hold for all i, j. Also, for any
elements i, j, and p in a matrix,  aij . ajp = aip. A measure of consistency in a matrix may be derived from λmax in
eqn. (2). Under perfect consistency, λmax = N  for a matrix of order N. Otherwise, SAATY (1977) shows that
λmax > N and suggests a consistency index given by:

CI = (λmax - N) / (N - 1). (5)
We compare CI with a random consistency index, RI, obtained from 500 randomly generated judgement
matrices of order N  where judgement values aij are randomly picked from a [1/9, 9] scale.  That gives us an
idea of how far we are from the worst case situation. Values of RI in Table 3 (SAATY, 1980) represent the
95th percentile of the randomly generated CIs. The consistency in a judgement matrix is measured by the
consistency ratio CR, given by:

CR = CI / RI. (6)
The threshold value for CR suggested by Saaty is 0.1. A matrix with CR > 0.1 should have its evaluations
reviewed (Saaty’s choice of threshold value for CR is thoroughly justified in VARGAS, 1982). For sensory
evaluation purposes however, such a low CR value may be unrealistic and larger values may be adopted (0.2
or 0.3, for example).

N 3 4 5 6 7 8
RI 0.58 0.90 1.12 1.24 1.32 1.41

Table 3.  Random Index values for matrices of order N = 3,...,8.

4. Case Example

The case study deals with the development of a new formula for a well-known brand of a pet food product
(dog biscuits). Samples are obtained from a mixture experiment with ten experimental runs; percentage of
three ingredients and biscuit thickness are the control variables. A central composite design ran on
independentized control variables (CORNELL, 1990; Ch.3) is the design chosen. Table 4 presents both the
coded independent control variables (W’s and Thick.) and the % of each ingredient tested in the runs (I’s).
Two sensory attributes are measured through sensory panel: texture and general appearance. Evaluations are
performed by five untrained company employees. Texture essentially measures the baked dough consistency
and crackiness. General appearance encompasses aspects such as biscuit color and integrity. Panelists are
familiar with the product and its desired sensory characteristics, being requested therefore to compare
products with the control element regarding their compliance to target characteristics. Sensory tests followed
the procedure in section 2. In view of cost and time constraints, only three samples were used as control
elements in the sensory tests (i.e., N = 10 and M = 3).

Run 1 2 3 4 5 6 7 8 9 10

W1 -1 -1 1 1 0 -1,41 1,41 0 0 0
W2 -1 1 -1 1 0 0 0 -1,41 1,41 0

Thick -1 -1 -1 -1 -1 1 1 1 1 1

I1 46,4 32,8 16,6 39,7 23,6 7,4 30,5 14,3 0,7 23,6
I2 16,6 32,8 46,4 7,4 23,6 39,7 0,7 14,3 30,5 23,6
I3 7,3 4,7 7,3 23,2 23,2 23,2 39,1 41,7 39,1 23,2
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Table 4. Experimental runs in terms of coded independent variables (W’s and Thick.) and mixture
ingredients (I’s).

Panelists are numbered 1 to 5.  There are three judgement matrices for each panelist, each corresponding to a
different control sample. Results for panelist 1 on texture are presented in Table 5; matrices are identified

)(
11
mA , m = 1,2,3; the matrix of midpoints is identified as 11A . Results for other panelists are given in form of

their texture weight vectors ( 1kw , k = 1,…,5) and consistency measures (CR), obtained from their midpoint
matrices. Note that panelist 1’s CR is above the threshold value of 0.1; all other panelists, however, displayed
very low CRs. We decided to keep panelist 1’s evaluations in spite of their low consistency, since the CRs
will be used latter to assign weights to evaluations from different panelists, which will penalize 1’s lack of
consistency. General appearance results are also given in Table 5; we restrict ourselves to present panelists’
weight vectors ( 2kw , k = 1,…,5) and CRs, obtained from midpoint matrices.

The panel leader subjectively rated panelists regarding their excellence in performing sensory evaluations.
Ratings were numbers in the [0,1]-interval. The resulting normalized vector of ratings is named Exc, and
presented in the lower portion of Table 5. In that vector, panelists with good knowledge of the product under
study and with past experience in sensory panels were given high ratings. In addition, the reciprocals of the
consistency ratios were used as importance weights to panelists. The resulting normalized vector of
reciprocals is named 1/CR and presented in the lower portion of Table 5.

Table 5.   Panelist 1 judgement matrices on texture; panelist 1’s matrix of midpoints on texture;
panelists’ weight vectors and CRs on texture and appearance; panelists’ ratings on excellence and CR.

Our objective is to build regression models for texture and general appearance that would allow us to optimize
the product regarding their sensory properties. We chose to build aggregate models for the attributes, instead
of modeling panelists’ individually. Therefore, we combine the texture and appearance weight vectors using
the following procedure. Combine vectors Exc and 1/CR to obtain a single vector of ratings, say r, for the
panelists. We used a weighted sum of vectors, with weights 0.3 and 0.7 for Exc and 1/CR, respectively (i.e., r
= (0.3 × Exc) + (0.7 × 1/CR)). Entries in r are given by [r1,…, r5]′. Arrange vectors w1p,…, w5p as columns of

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
1 1,00 8,03 1,08 0,97 1,05 0,93 0,96 4,21 0,90 67,21 1 1,00 3,00 4,54 1,80 3,60 0,62 0,17 1,10 0,20 23,50
2 0,12 1,00 0,14 0,12 0,13 0,12 0,12 0,53 0,11 8,37 2 0,33 1,00 3,00 0,50 1,80 0,40 0,06 0,42 0,06 8,00
3 0,92 7,40 1,00 0,90 0,97 0,86 0,88 3,89 0,83 61,97 3 0,22 2,00 1,00 0,08 0,82 0,33 0,36 1,37 0,39 34,50
4 1,03 8,23 1,11 1,00 1,08 0,95 0,98 4,32 0,92 68,96 4 0,56 2,00 12,84 1,00 4,00 0,11 0,13 0,33 0,23 23,00
5 0,95 7,61 1,03 0,92 1,00 0,88 0,91 4,00 0,85 63,71 5 0,28 0,56 1,23 0,25 1,00 0,39 0,15 0,42 0,18 23,50
6 1,08 8,65 1,17 1,05 1,14 1,00 1,03 4,54 0,97 72,45 6 1,62 2,49 3,04 9,00 2,57 1,00 0,80 2,00 1,25 31,01
7 1,04 8,37 1,13 1,02 1,10 0,97 1,00 4,40 0,94 70,12 7 6,00 18,00 2,75 7,50 6,67 1,25 1,00 3,50 1,19 28,58
8 0,24 1,90 0,26 0,23 0,25 0,22 0,23 1,00 0,21 15,95 8 0,91 2,40 0,73 3,00 2,40 0,50 0,29 1,00 0,25 9,52
9 1,11 8,93 1,21 1,08 1,17 1,03 1,07 4,69 1,00 74,78 9 5,00 17,01 2,59 4,44 5,56 0,80 0,84 4,00 1,00 29,17
10 0,01 0,12 0,02 0,01 0,02 0,01 0,01 0,06 0,01 1,00 10 0,04 0,13 0,03 0,04 0,04 0,03 28,58 0,11 0,03 1,00

1 1,00 0,79 9,96 24,13 12,32 0,79 1,90 1,25 3,09 14,04 1 2 3 4 5 6 7 8 9 10 CR
2 1,27 1,00 12,65 30,66 15,65 1,00 2,41 1,59 3,92 17,84 0,1 0,04 0,05 0,1 0 0,2 0,26 0,1 0,2 0,010,20
3 0,10 0,08 1,00 2,42 1,24 0,08 0,19 0,13 0,31 1,41 0 0,04 0,04 0,1 0 0,1 0,11 0,2 0,4 0,050,04
4 0,04 0,03 0,41 1,00 0,51 0,03 0,08 0,05 0,13 0,58 0,1 0,08 0,06 0,1 0 0,1 0,12 0,1 0,2 0,110,02
5 0,08 0,06 0,81 1,96 1,00 0,06 0,15 0,10 0,25 1,14 0 0,04 0,04 0,1 0,1 0 0,2 0,1 0,3 0,070,03
6 1,27 1,00 12,65 30,66 15,65 1,00 2,41 1,59 3,92 17,84 0,1 0,08 0,08 0,1 0,1 0,1 0,15 0,1 0,2 0,050,01
7 0,53 0,41 5,25 12,71 6,49 0,41 1,00 0,66 1,63 7,40  
8 0,80 0,63 7,94 19,24 9,82 0,63 1,51 1,00 2,46 11,19 1 2 3 4 5 6 7 8 9 10 CR
9 0,32 0,25 3,23 7,82 3,99 0,25 0,61 0,41 1,00 4,55 0,1 0,01 0,32 0 0,4 0 0,09 0,1 0 0,010,10
10 0,07 0,06 0,71 1,72 0,88 0,06 0,14 0,09 0,22 1,00 0,1 0,06 0,15 0,1 0,1 0,1 0,1 0,1 0,1 0,020,02

0,1 0,06 0,06 0,1 0,1 0,1 0,28 0,1 0,1 0,020,03
1 1,00 1,50 2,56 0,05 0,61 0,14 0,05 0,26 0,05 0,37 0 0,04 0,05 0,2 0,1 0,1 0,18 0,1 0,2 0,030,02
2 0,67 1,00 1,71 0,03 0,41 0,09 0,03 0,18 0,03 0,25 0,1 0,09 0,16 0,1 0,1 0,1 0,14 0,1 0,1 0,020,00
3 0,39 0,58 1,00 0,02 0,24 0,05 0,02 0,10 0,02 0,15
4 19,94 29,81 51,12 1,00 12,15 2,73 0,91 5,27 0,91 7,47 k Exc 1/CR
5 1,64 2,45 4,21 0,08 1,00 0,22 0,07 0,43 0,08 0,61 1 0,04 0,02
6 7,31 10,93 18,75 0,37 4,45 1,00 0,33 1,93 0,34 2,74 2 0,12 0,09
7 21,98 32,87 56,35 1,10 13,39 3,01 1,00 5,81 1,01 8,23 3 0,20 0,20
8 3,78 5,66 9,70 0,19 2,30 0,52 0,17 1,00 0,17 1,42 4 0,28 0,13
9 21,80 32,59 55,88 1,09 13,28 2,98 0,99 5,76 1,00 8,17 5 0,36 0,57
10 2,67 3,99 6,84 0,13 1,63 0,37 0,12 0,71 0,12 1,00

)1(
11A

)2(
11A

)3(
11A

11A

11w

21w

31w

41w

51w

12w

22w

32w

42w

52w
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a matrix Wp. The combined weight vector for attribute p (p = 1,2) is given by rWw pp = . Using the

information in Table 5, we arrive at the following combined weight vectors:

[ ]062.0;218.0;122.0;149.0;101.0;053.0;079.0;066.0;069.0;080.01 =w (7)

[ ]022.0;119.0;119.0;161.0;096.0;102.0;104.0;124.0;065.0;086.02 =w (8)

Regression models are determined relating vectors in eqs. (7) and (8) with independent variables W’s and
Thick in Table 4. The resulting models, including terms that are at least 95% significant, are (R2 refer to the
coefficient of determination):

)972.0()(005.0014.0005.0021.0109.0

)630.0()(031.003.0075.0
2

221

2
22

=×++−+=
=×++=

RWThickThickWWAppearance

RWWThickureText
(9)

Note that the models above present reasonable fit, considering the variability inherent to sensory panel data.
Once the regression models for Texture and Appearance are at hand, we are able to perform different
optimizations on the experimental results. To illustrate that, we determine the appropriate control factors
settings such that the attributes Texture and Appearance are at their best. Recall that in the weight vectors
derived for each panelist samples were given weights in the [0,1] interval, such that values near 1 denote good
samples. Initially, we performed a nonlinear search for the best settings of control factors W’s and Thick, such
that the attribute Texture was optimized. In our search, the regression model for Texture in eq. (9) was the
objective function to be maximized, and the search was limited to the design region in Table 4. The best
settings for the control factors, in terms of the mixture ingredients, was determined to be

I1 = 3.07%          I2 = 10.85%          I3 = 56.38%          Thick = +1.
We repeated the procedure above, using this time the regression model for Appearance in eq. (9) as the
objective function to be maximized. The search was constrained by the design region, as previously. The best
settings for the control factors was determined to be

I1 = 6.65%          I2 = 6.65%          I3 = 57.0%           Thick = +1.
As expected, the two sets of control factor settings above do not coincide. That is usually the case when
optimizing experiments regarding more than one response variable. Although limiting ourselves to the two
optimization exercises above, we direct the reader to the works of DERRINGER & SUICH (1980),
PIGNATIELLO (1993) and FOGLIATTO et al. (1999) to carry the optimization a step further in search of a
global optimum.

5. Conclusion

We propose a new method for sensory data collection and analysis based on psychophysical scaling methods.
Our method yields quantitative data, which can be used for model building purposes, and generates an
efficiency measure for subjects, the consistency ratio. Using the consistency ratio, the efficiency of different
subjects may be taken into account when combining their evaluations into a single vector of evaluations.
The proposed method is applied in a case study from the food industry, where 5 panelists evaluate the
intensity of two attributes in 10 samples obtained from a designed experiment. We generate intensity scorings
of samples using evaluations from each panelist, and determine their consistency ratios. Evaluations from the
panelists are then combined using their consistency scores and a subjective assessment of their efficiency as
weights. Combined weights are modeled as function of the control factors and partial optimizations are
carried out.
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