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We propose a heuristic algorithm to solve a real-life inventory routing 

problem (IRP) motivated by the bulk gas distribution operations of a 

multinational company that supplies gases for industrial applications. 

This problem takes into account multiple sources, time windows, 

driver-related constraints, customers orders, and many other practical 

constraints. The developed heuristic algorithm decouples the problem 

into two distinct phases at each iteration. In the first, it decides which 

resources to use, how much to deliver and priority values for each 

customer. Then, in the second phase, it determines which customers 

will be visited and the respective vehicle route. This heuristic was 

embedded in a multi-call approach that dynamically changes the values 

of the parameters until reaching the predefined stopping criterion. 

Computational experiments using real-life data showed that the 

heuristic is able to find solutions to most instances in short running 

times and hence can be used for efficient decision making in practice. 
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1. Introduction 

The inventory routing problem (IRP) emerges in logistic contexts in which a supplier has to 

determine which customers to visit and how much to deliver to each of them at each period of 

a time horizon, in addition to design the best routes for carrying out these visits. Hence, the IRP 

integrates two challenging problems, namely the multi-period inventory management problem 

and the vehicle routing problem. Given the complexity of the decisions involved, the research 

on solutions methods for the IRP has been very active in the past years (ANDERSSON et al., 

2010; COELHO et al., 2014). 

In this paper we propose a solution method for a practical variant of the IRP, motivated by an 

application in the bulk gas distribution industry under vendor-managed inventory (VMI) 

system. In VMI, the supplier manages the inventory of their customers, aiming at improving 

the efficiency of the overall system. In turn, the supplier must guarantee a minimum service 

level on the customers. Thus, the supplier must simultaneously decide when and how much to 

deliver to each customer and how to perform such deliveries. Particularly, this latter decision 

involves, among others, the choosing of the source of the product to deliver and the resources 

that must be used to perform the delivery (e.g. truck/trailer and driver). 

An IRP variant was first studied by Bell et al. (1983), who solved an integrated inventory 

management and vehicle routing problem also for a gas distribution industry. Since then, 

several variants and solution methods have been studied in the literature. Dror et al. (1985) and 

Dror and Ball (1987) addressed long-term IRPs. Dror et al. (1985) solved the problem in a 

rolling horizon fashion, whereas Dror and Ball (1987) reduced the planning horizon to a single-

period problem, defining costs reflecting long-term decisions, safety inventory levels and 

subsets of customers to be considered. Campbell and Savelsbergh (2004) develop a two-phase 

hybrid approach for a IRP minimizing transportation costs only. In their approach, the visit 

schedule and delivery sizes are determined solving an integer program while the delivery routes 

are constructed with heuristics algorithms. Savelsbergh and Song (2007) and Savelsbergh and 

Song (2008) proposed heuristic and hybrid algorithms to solve a variant of the IRP motivated 

by a real-life application which includes pickup and delivery routes spanning multiple time 

periods. Abdelmaguid et al. (2009) proposed heuristic algorithms for an IRP with backlogging. 

Le et al. (2013) used a column generation-based heuristic to solve an IRP with perishability 

constraints. Cordeau et al. (2014) solved the multi-product IRP with a three-phase 

decomposition-based heuristic algorithm. Benoist et al. (2011) solved an real-life IRP through 
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a rolling-horizon heuristic algorithm. The authors use a tailored short-term objective function 

designed to reflect long-term costs. Singh et al. (2015) developed an incremental heuristic 

approach for a IRP motivated by real-life distribution problem in a bulk gas industry. 

Basic variants of the IRP have also been addressed in recent years, focused on methods to obtain 

optimal solutions (COELHO et al., 2014). Archetti et al. (2007) and Solyalı and Süral (2011) 

proposed branch-and-cut (B&C) algorithms for a single-vehicle, single-product IRP. Coelho 

and Laporte (2013); Coelho and Laporte (2014) and Adulyasak et al. (2014a) also proposed 

B&C algorithms but for the multi-period, single-product IRP, while Desaulniers et al. (2016) 

developed a branch-price-and-cut (BPC) method for this problem. Also for the multi-vehicle, 

single-product IRP, metaheuristic algorithms were proposed by Shiguemoto and Armentano 

(2010); Archetti et al. (2012); Coelho et al. (2012); Adulyasak et al. (2014b); Santos et al. 

(2016); and Alvarez et al. (2018). In particular, Archetti et al. (2016) and Alvarez et al. (2018) 

address the IRP using as objective function the so called logistic ratio. This objective is the ratio 

of the total routing cost to the total quantity distributed, i.e., the distribution cost per unit 

delivered. 

In this paper we propose a construction heuristic based on the product consumption at customers 

through the time horizon. It ranks customers according to product shortage and solves a series 

of resource constrained shortest path problems to determine shifts that satisfy all the constraints 

required by the company. The remainder of this paper is organized as follows. In Section 2, we 

describe the IRP addressed in this paper. A detailed description of the method is given in 

Section 3. In Section 4, we present the results of computational experiments with the proposed 

heuristic using instances created from real-life data. We then close this paper in Section 5 with 

conclusions and suggestions for future developments. 

 

2. Problem description 

The IRP variant addressed in this paper is concerned with the repeated distribution of a single 

product to a set of customers 𝒞 = {1,2, … , n}, over a discrete and finite planning horizon 𝒯 =

{1,2, … , T}. This variant is motivated by the distribution process of a multinational company that 

supplies industrial gases for different applications. The company works with three types of gas 

distribution: pipelines, bulk and cylinders. In this paper, we focus on the bulk gas distribution, 

which poses a challenge when combined with VMI. The company monitors (telemetry and 

forecast) and must manage the customers inventories. In this case, several decisions need to be 
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made simultaneously: when to deliver to each customer; how much to deliver in each visit; how 

to combine such deliveries into feasible routes; and which resources to use. 

To accomplish this, we must determine a set of driver shifts to satisfy customer demand 

requirements, maximum duration and additional technical constraints. We are given a set of 

transportation and human resources (trucks and drivers), which are located at one single base 

(depot). Drivers have different availabilities according to their time windows. There is a 

heterogeneous fleet of vehicles and each vehicle can perform multiple routes in the planning 

horizon. Multiple production sites (sources) are available in the problem, which means that the 

vehicles can load the product at different points. Each source has a list of vehicles allowed to 

load. A fixed service time (loading/unloading) is incurred at each source and customer (safety 

reasons).  

Each shift must start at the base, visit a subset of customers and/or sources, and then return to 

the base. All these visits must satisfy vehicle capacity, customer tank capacity and safety level, 

customer time windows, maximum driving duration, trailer usage and minimum operation 

quantity. Customers are divided into two classes: VMI customers and call-in customers. For 

each VMI customer the company monitors its tank level and guarantees that this level never 

becomes lower than a given safety level. Call-in customers place orders through the planning 

horizon and they are mandatory. A customer can be further classified as layover, which means 

that the duration of a shift containing this customer can be extended by including a resting time 

for the driver. The cost of the shifts is proportional to its duration (driver costs) and includes 

the driving time, the idle time and the loading/unloading time. A travel cost proportional to the 

traveled distance is also incurred (fuel consumption costs). When a rest appears in a shift, there 

is an additional layover cost.  

The objective is to minimize the logistic ratio, which is given by the total transportation cost of 

the shifts divided by the total quantity delivered over the planning horizon. Holding costs are 

not included in this objective. The logistic ratio corresponds to the average cost per unit of 

delivered product and captures the long-term impact of a short-term planning given that it 

focuses on the efficiency of the process (BENOIST et al., 2011; SINGH et al., 2015; 

ARCHETTI et al., 2016; ALVAREZ et al., 2018).  
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3. A two-phase heuristic for the addressed IRP variant 

The purpose of the heuristic is to determine a set of shifts that minimizes the logistic ratio, while 

satisfies customer demand requirements and technical constraints. This is an iterative procedure 

that, at each iteration, finds a single shift by choosing: an available driver; the starting and 

ending time of the shift, which must be inside of one the time windows of the driver; the trailer 

used by the driver; the sequence of customers and sources that will be visited; and how much 

will be delivered (collected) to each customer (at each source).  

The first step in the heuristic consists in computing the inventory/tank levels I  at each customer 

i ∈ 𝒞 and time period t ∈ 𝒯, given the respective initial inventory level I  and the product 

consumption d  (demand). This is done by subtracting the product consumption of each time 

period from the inventory level on the previous period (I , ). For a given time period t ∈ 𝒯, 

the inventory level of customer i ∈ 𝒞 is given by:  

I = max 0, I − ∑ d .     (1) 

These levels are used to determine which customers must be visited and when they must be 

visited to avoid their tank level to become lower than the safety level. After their computation, 

we create a list containing the time windows of all drivers, sorted in the ascending order of their 

respective opening time instant. Then, we start the iterative process from the first time window 

in the list. 

Each iteration starts with the driver that corresponds to the current time window. Then, we 

select the earliest available trailer that can be assigned to the driver. With the driver and trailer 

chosen, we select a subset of customers for potential visits, given by those that can be serviced 

using the current trailer and whose time windows have overlap with the current driver’s time 

window. For each customer i ∈ 𝒞 selected in this subset, we first define its delivery amount q  

as follows. For VMI customers, this is computed as  

 q = min{C − I , Q},     (2) 

where C  is the tank capacity of the customer, I  is the inventory level of the customer at the 

opening time of its time window and Q is the trailer capacity. If q  is smaller than the minimum 

delivery quantity imposed by the customer, then q  is set to 0. For call-in customers, the demand 

corresponds to the actual demand of the order. We also define a time window for each customer, 

based on the value defined for q . It opens at the first time instant in which we can deliver the 
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product amount q  without violating the customer capacity; and closes in the latest time instant 

in which the safety level is still not violated without the delivery of q . 

Since it may be impossible to visit all selected customers due to capacity and timing 

requirements, we need to choose which ones to visit in the shift. To do so, we associate a priority 

value p  to each selected customer i ∈ 𝒞, trying to assess the urgency to serve the customer. This 

urgency is quantified by checking whether the customer safety level will be violated in the next 

look_ahead time periods, starting from the opening of the current driver’s time window. 

Hence, look_ahead is a parameter that suggests how long we should look ahead in the time 

horizon, to have a good assessment of the right time instant to visit the customer. If the safety 

level of customer i ∈ 𝒞 is not violated in this time interval, then we set p  =  0. Otherwise, the 

priority is set as  

p = T − ℎ,              (3) 

where T is the last period of the horizon and ℎ is the period in which the safety level becomes 

violated (for VMI customers) or the latest time that the order can be delivered (for call-in 

customers). An illustration of how the parameter look_ahead works is presented in Figure 1 for 

the tank level (inventory) of a given customer. Notice that at the beginning of the current time 

window (a) the tank level is higher than the safety level. However, by looking to the next 

look_ahead periods, we observe that the safety level becomes violated at time period h. 

 

Figure 1 - Illustration of the look_ahead parameter 

 

Source: Created by the authors 
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Additionally, to include a long-term assessment in the priority values, we verify the tank level 

also at the end of the planning horizon. If it violates the safety level, then the priority is updated 

as follows  

𝑝 = 𝑝 + longterm_multiplier ∗ (T − 𝑎).    (4) 

Hence, the parameter longterm_multiplier imposes an extra penalty to avoid the inventory 

level of the customers to get too low on the long-term, aiming to prevent the accumulation of 

large demands in latter periods, which can complicate to serve all customers in the next 

iterations of the heuristic. At this point, we have assigned priorities to all customers that can be 

visited by the driver and trailer chosen at the current iteration. Then, we can start the next phase 

of the iteration, in which we build and solve a resource constrained shortest path problem with 

recharge (RCSPPR), based on the data defined in the previous steps. This RCSPPR is defined 

by n +  ns +  1 nodes, given by the n customers, the ns sources and the base. There is one arc 

(i, j) linking each pair of nodes i and j, except when j cannot be visited by the current trailer. 

There are three resources in the problem: vehicle capacity, customer time windows and route 

duration. The shortest path must start and return to the depot (base) and respect the limits 

impose to all these resources. Recall that if the route includes at least one layover customer, 

then the maximum driving duration can be extended including a resting time for the driver. The 

path can visit the source nodes as many times as possible and the vehicle becomes fully loaded 

every time this visit happens.  

To solve the RCSPPR we use a standard insertion heuristic in which a seed node is chosen to 

start a new path. The node corresponding to a customer i ∈ 𝒞 with the smallest 𝑝  (priority 

values) is chosen as the seed. Then, new nodes are iteratively added to the path until no more 

nodes can be added without violating the resources. Again, nodes corresponding to customers 

with the smallest priorities are the first to be included. Every time a node i ∈ 𝒞 is chosen to enter 

the path, we test the feasibility and compute the potential increasing in the total travel cost after 

inserting this node considering each two adjacent nodes in the path. We analyze this based on 

three different types of insertion:  

 Insert node i only;  

 Insert a visit to the closest source node and then to node i;  

 Insert a visit to node i and then to the closest source node;  
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 Insert a visit to the closest source node, then to node i and then to the closest source 

again.  

The node is then inserted in the position that is feasible and results in the minimum increase of 

the travel cost, according to one of these insertion types. 

By solving the RCSPPR the shift is determined and then included in the partial solution. Then, 

we update all data regarding inventory levels of the visited customers, the load level of the used 

trailer and the next time instant in which the driver will be available. This finishes one iteration 

of the heuristic. A new driver time windows is then selected from the sorted list defined at the 

beginning of the method and a new iteration starts. The heuristic finishes when this list becomes 

empty. If the inventory levels of all customers are higher than the safety level at each time 

period, then we found a feasible solution of the problem. Since the method is a construction 

heuristic that takes a series of decisions sequentially and without any backtrack, it may finish 

without obtaining a feasible solution.  

The heuristic runs quickly for most instances considered in the computational experiments (see 

Section 4). It has a few parameters to be set by the user before running, namely look_ahead 

and longterm_multiplier. These parameters have practical meanings and are typically 

considered in the decision-making process of logistic activities. Hence, setting good values for 

them should not be a challenge to a decision maker and may even allow them to analyze 

different scenarios. In addition, the data collected on different time periods may be rather 

heterogeneous regarding the number of customers, time periods, available vehicles, drivers’ 

schedules and other features.  

Another way of considering these parameters is recurring to a multi-call strategy, in which the 

heuristic is called several times, but using different parameter settings. For each parameter that 

changes the performance of the heuristic significantly, we define a range such that the heuristic 

is called for each discrete value selected from this range. As a result, we have a multi-call 

construction heuristic for addressed IRP variant. A pseudo-code for this heuristic is shown in 

Algorithm 1. 

 

 

 

 

 



 
 

8 
 

 

Algorithm 1 – The two-phase heuristic in the multi-call strategy 

 
Source: Created by the authors 

 

4. Results 

We have applied the proposed multi-call heuristic to the problem instances available at the 

website of the ROADEF/EURO 2016 Challenge (ROADEF, 2016). These instances were 

created using real-life data from Air Liquide, a multinational company that serves 

approximately one million customers worldwide, in various industries. Hence, they are very 

challenging and include a large number of time periods, customers and other elements, as 

presented in Table 1. To be concise, we consider in this paper only instances in set B. The 

heuristic was implemented in language C/C++ and the computer used to run the experiments is 

a Linux PC with processor Intel Core i7-3540M and 8 GB of RAM. The maximum running 

time was set as 3600 seconds. 

Table 2 presents the computational results of the proposed heuristic using the instances 

described in Table 1. The first column gives the name of the instance; the remaining six columns 

show the logistic ratio of the best solution found within the time limit specified in the header of 
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the column; and the last column gives the best-known solution (BKS) as provided in (ROADEF, 

2016), obtained within a time limit of 1800 seconds. Notice that the proposed heuristic obtains 

feasible solutions for most instances, which is already a challenging task. In addition, it achieves 

reasonably good solution values even for short running times. 

 

Table 1 – Main characteristics of the real-life instances from ROADEF (2016) 

Source: Created by the authors 

 

Table 2 – Results obtained by the proposed heuristic within 3600 seconds 

Source: Created by the authors 
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5. Conclusions and future developments 

We proposed a construction heuristic for a practical variant of the inventory routing problem, 

which considers real-life requirements motivated by the bulk gas distribution activities of a 

multinational company. Each iteration of this heuristic has two main phases. In the first, it 

defines priority values for customers, based on the inventory level of a given time interval. 

Then, in the second phase, a feasible route is defined for the customers with the best priorities. 

The resulting route is included in the solution as a single shift and the process is repeated. The 

heuristic is based on two main parameters: look_ahead, which tells how many periods ahead 

we should look to check if a customer safety level is violated; and longterm_multiplier, 

which defines an extra penalty to avoid the inventory level of the customers to get too low on 

the long-term. These parameters have practical meanings and may be intuitively handled by the 

decision makers. We have also proposed a multi-call strategy, in which different values are 

automatically tested for these parameters.  

The results of computational experiments using instances created from real-life data indicate 

that the heuristic was able to find feasible solutions to most instances and in short running times. 

Hence, we believe that it may be of great value in practice, to help decision makers to quickly 

determine a feasible policy that integrates inventory and routing decisions. This heuristic can 

also be used to find initial solutions for more elaborated methods, such as metaheuristics and 

matheuristics. Therefore, an interesting future development would be to design local search 

heuristics to be used jointly with the proposed heuristic in a metaheuristic framework. Also, 

different strategies may be tried to define the priorities values of customers as well as to solve 

the resource constrained shortest path problem. 
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