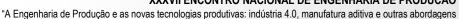
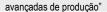
"A Engenharia de Produção e as novas tecnologias produtivas: indústria 4.0, manufatura aditiva e outras abordagens avançadas de produção"

Joinville, SC, Brasil, 10 a 13 de outubro de 2017.


APLICAÇÃO DO MÉTODO PDCA PARA SOLUÇÃO DE PROBLEMAS: ESTUDO DE CASO EM UMA ALIMENTÍCIA NO TRIÂNGULO MINEIRO



O presente trabalho visa demonstrar a importância da utilização do Ciclo PDCA para a resolução de problemas em uma indústria alimentícia de pequeno porte que produz batata palha, localizada no triângulo mineiro. Atualmente um dos grandes obstáculos das empresas é a busca de produtos e de processos padronizados, com a finalidade de se aumentarem a produtividade e a qualidade sem perdas. A melhor forma é a utilização de métodos de melhoria contínua. No meio de diversos procedimentos há o Ciclo PDCA (Plan, Do, Check, Act), que se destaca pois é rápido e eficaz para a resolução de problemas. Esse método busca bater a meta estabelecida, ao se planejar, executar, controlar e agir sobre as falhas. O ciclo PDCA deve ser rodado constantemente, resultando em uma melhoria contínua tanto para os processos como para a organização. Após um estudo da empresa e análises dos setores produtivos, averiguaram-se necessidades de melhorias. Foi elaborado um plano de ação com os dados obtidos no decorrer do trabalho para a resolução do problema encontrado, resultando na melhoria do processo.

Palavras-chave: PDCA, Qualidade, Indústria Alimentícia

Joinville, SC, Brasil, 10 a 13 de outubro de 2017.

1. Introdução

O desenvolvimento das indústrias contemporâneas tornou o ambiente de negócios extremamente competitivo, com ampla concorrência e busca pela excelência. Para que seja possível tornar-se líder de mercado, é necessário o acompanhamento constante das necessidades dos consumidores finais, além de garantir que os processos interno e externo sejam os mais eficazes, gerando minimização de custos e aumento da satisfação e da confiança das partes envolvidas.

De acordo com a Associação Brasileira das Indústrias de Alimentação (ABIA) a indústria de alimentos e bebidas gera aproximadamente 9,5% do Produto Interno Bruto (PIB) do Brasil. O faturamento das empresas do setor acumulou R\$431,9 bilhões em 2012, sendo que R\$353,9 bilhões somente em alimentos. O setor tem importância significativa na economia nacional, sendo responsável por empregar 1,63 milhão de trabalhadores.

O estudo de caso fundamenta-se em uma indústria do setor alimentício, produtora de produtos processados de batata. O principal produto produzido é a batata palha. Embora ainda pouco desenvolvida no Brasil, cerca de 3 a 5% de toda a batata produzida no país é processada, segundo a Associação Brasileira da Batata (ABBA). Para efeito de comparação, os norte-americanos processam 2/3 de sua produção, estimada em 23 milhões de toneladas, o que corresponde a aproximadamente 10 vezes a produção brasileira.

O presente trabalho tem o objetivo de apresentar uma proposta para melhoria das características do produto final, buscando através da metodologia PDCA alcançar o objetivo de reduzir custos, e, por consequência, de atingir a competitividade almejada pelas indústrias no atual cenário econômico.

2. Referencial teórico

2.1. Método de melhoramento PDCA

A metodologia PDCA é amplamente empregada em processos de manufatura, pois se trata de um instrumento eficiente para análise e para resolução de problemas.

13

avançadas de produção"

Joinville, SC, Brasil, 10 a 13 de outubro de 2017.

Método é um termo que se origina do grego e é composto pelas palavras *meta*, cujo significado é "além de" *hodos*, que significa "caminho". Assim, a palavra método representa "caminho para se chegar a um ponto além do caminho". (CAMPOS, 1992).

Adaptando a definição de Campos (1992) ao conceito de PDCA, pode-se concluir que o método é um caminho para se atingir uma meta.

Pode-se observar o cuidado no uso dos métodos, tanto de forma qualitativa quanto quantitativa em diversos estudos científicos. Segundo Pereira (2004), os métodos constituem "uma ferramenta de se agruparem resultados e obter-se uma melhor compreensão geral acerca de um fenômeno que foi analisado".

O uso do método PDCA pelas empresas se dá pela eficiência em gerir os processos internos, de maneira a assegurar a aquisição das metas colocadas, utilizando os dados como fonte de direção das decisões. A Figura 1 representa de forma gráfica as etapas do ciclo PDCA.

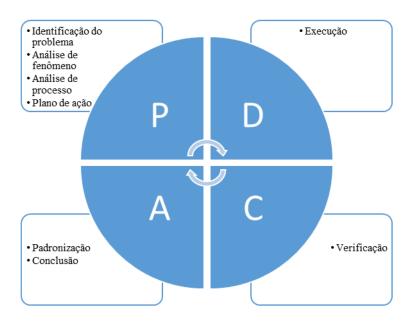
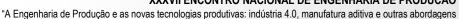



Figura 1 – Ciclo PDCA

Fonte: Adaptado de SOUSA (2015)

A fase inicial refere-se ao planejamento (PLAN), no qual se define o escopo do recurso estudado, determinando métodos para seu método. Na segunda etapa, a de execução (DO), é necessário treinamento e envolvimento de pessoas para a execução efetiva do

avançadas de produção"

Joinville, SC, Brasil, 10 a 13 de outubro de 2017.

planejamento. A terceira etapa, a de verificação (CHECK), objetiva comparar o que foi obtido com o planejado. Nesta etapa, verifica-se se os resultados foram alcançados. Já a última etapa (ACTION), representa a tomada de ações corretivas, caso aplicável. Se o proposto inicialmente foi obtido, deve-se garantir a continuidade do processo, padronizando-o.

Nos próximos tópicos, aprofundar-se-á cada etapa do ciclo PDCA.

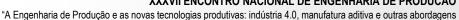
2.1.1. Etapa de planejamento (Módulo P – PLAN)

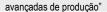
Este módulo de Planejamento, por ser o início do ciclo PDCA, é considerado o mais significativo, no qual são estabelecidos os objetivos e os processos indispensáveis para fornecer resultados conforme o solicitado pelo cliente. Ou seja, um bom planejamento proverá de todas as informações e dados necessários para a realização completa do procedimento com eficácia.

Deve-se lembrar que a fase do planejamento é sempre o mais complicado e que exige mais esforços. No entanto, quanto maior for o número de informações utilizadas, maior será a necessidade do emprego de ferramentas apropriadas para coletar e processar essas informações, além de dispor delas. (WERKEMA,1995).

Algumas ferramentas como Diagrama de Ishikawa, Gráfico de Pareto, brainstorming e 5W2H são muito úteis nesta fase, para suporte nas escolhas das decisões. Quanto melhor o planejamento, as metas serão mais fáceis de serem atingidas. (CAMPOS,1996).

Andrade e Melhado (2003) explicam que o módulo planejar abrange várias etapas do processo, classificadas da seguinte forma:


Localizar o problema → Estabelecer meta → Análise do fenômeno → Análise do processo → → Elaborar plano de ação


2.1.2. Etapa de execução (Módulo D - DO)

A próxima fase é o DO (executar). Aqui encontramos todos os objetivos e metas a serem alcançados; traçados em um plano de ação que deve ser bem estruturado, e que deverá ser posto em prática na organização escolhida.

Para a melhor eficiência desta etapa, Campos (2001) subdivide-a em duas etapas principais: Treinamento e Execução da ação.

Joinville, SC, Brasil, 10 a 13 de outubro de 2017.

No treinamento, todos os funcionários envolvidos devem ter conhecimento do plano de ação, divulgado em reuniões, com ênfase nas tarefas e nas suas razões; assim como no seu

controle. É necessária verificação para identificar qual tarefa necessita da participação de

todos os funcionários, buscando a melhor execução possível.

Com o intuito de se ter um controle mais preciso das medidas apresentadas no plano de ação, é necessário fazer a medição regular e adequada desses itens de controle, que poderão estar sendo gerados quando uma nova meta for proposta ou poderão estar locadas na manutenção rotineira.

2.1.3. Etapa de checagem (Módulo C – CHECK)

A terceira etapa do ciclo PDCA é o *Check* (verificar), em que ocorre a verificação do que foi executado na etapa antecedente (DO). Para que ocorra a verificação da melhor maneira possível, esta fase baseia-se nas ações que provém da fase de planejamento; e por isso todas as ações deverão ser monitoradas e formalizadas na fase executar.

Segundo Melo (2001), para a melhor organização, esta fase é dividida em três etapas: listagens dos efeitos secundários, verificação da continuidade ou não do problema, e comparação dos resultados. Assim, a fase é organizada para uma melhor eficácia da ação.

De acordo com Melo (2001), primeiramente deve-se fazer a comparação dos resultados, utilizando os dados coletados na fase anterior, com a finalidade de se verificarem o grau de redução dos problemas e o grau de eficácia das ações.

Após a execução da etapa de comparação dos resultados -que pode provocar efeitos secundários negativos ou positivos para a empresa- a fase seguinte é a da listagem dos efeitos secundários, em que serão tomadas as melhores decisões sobre esses efeitos. (MELO,2001).

Por último, deve-se fazer a verificação da continuidade ou não do problema, quando o saldo das ações é aceitável em relação ao esperado. A empresa, levando em consideração o plano inicial, deve garantir que todas as ações planejadas sejam executadas. Caso os efeitos negativos continuassem a ocorrer mesmo após o implemento das ações planejadas, a solução apresentada se configuraria como falha. Assim, para que as causas desses problemas possam ser solucionadas, deve-se reiniciar o ciclo PDCA. (MELO,2001).

16

avançadas de produção"

Joinville, SC, Brasil, 10 a 13 de outubro de 2017.

Caso contrário, se os efeitos forem positivos, confirmando o êxito das ações tomadas, a empresa poderá passar para a próxima fase o ACTION (ATUAR) do ciclo PDCA.

2.1.4. Etapa de ação corretiva (Módulo A – ACTION)

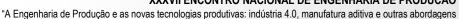
Esta última fase do ciclo PDCA é baseada na padronização que incide em preparar um novo padrão, ou modificar o já existente das ações efetuadas, cuja a eficiência foi averiguada na etapa precedente, visando a melhoria continua.

Logo após a elaboração dos novos padrões, eles devem ser divulgados em toda empresa por meio de reuniões, comunicados, entre outros. Assim, para se evitarem possíveis confusões, devem-se estabelecer a data de início, as áreas afetadas e o local da nova sistemática, para que a aplicação do padrão ocorra de forma sincronizada em toda a empresa.

O treinamento para os funcionários da empresa que estão cientes e aptos a realizar a nova metodologia operacional padrão deve ser de preferência no local de trabalho, fornecendo recursos que são essenciais para a eficiência do treinamento.

Portanto, esses padrões devem ser monitorados regularmente, com o propósito de averiguar o cumprimento do padrão; assim fazendo com que a empresa evite o aparecimento de um problema resolvido por causa do descumprimento dos padrões estabelecidos.

3. Metodologia


De acordo com Garcia (1998), o método de pesquisa concebe um processo ordenado e racional, composto por instrumentos simples que sugerem a utilização da reflexão e da experimentação para decorrer ao longo do caminho; e assim alcançar os objetivos preestabelecidos no planejamento da pesquisa.

O procedimento metodológico adotado:

- Acompanhamento da rotina de produção;
- Entrevistas com o gestor e com funcionários envolvidos com o processo;
- Métodos de coleta de dados: análise de documentos, procedimentos e observação visual;
- Análise do processo produtivo, destacando os de maior relevância para tomada de ação corretiva;

<u>17</u>

avançadas de produção"

Joinville, SC, Brasil, 10 a 13 de outubro de 2017.

- Planejamento das ações amparado pelas ferramentas de qualidade;
- Aplicação dos métodos, partindo da teoria para o estudo dos casos práticos.

3.1. Apresentação da empresa

Uma indústria alimentícia brasileira de pequeno porte localizada no triângulo mineiro-Minas Gerais que produz batatas processadas do tipo palha. Fundada em 2007, com mais de 8 anos de funcionamento. No momento presente, a matriz tem uma área física construída de 300 m².

Hodiernamente, a empresa apresenta em seu quadro de colaboradores: três funcionários encarregados da produção, um administrador de processos produtivos, um diretor geral, um presidente. Dessa forma, a empresa se adéqua ao perfil de uma organização de pequeno porte.

As principais variedades de batata utilizadas pela empresa são: Asterix, Marquis e Cupido. Esses cultivos exibem características adequadas ao processamento industrial, apresentando tubérculos de forma arredondada, película áspera e polpa branca. A razão de ocorrer variação das espécies é a disponibilidade de cada tipo de batata nos fornecedores. Além disso, ocorrem variações na qualidade da matéria-prima, que faz com que uma variedade seja escolhida em detrimento de outra.

A capacidade instalada é de aproximadamente 100 quilogramas de batata frita por hora, enquanto a capacidade utilizada é de 46 quilogramas de batata frita por hora. Calculando-se a razão entre a capacidade instalada e a capacidade utilizada, chega-se a uma taxa de utilização de 46%.

Em termos estatísticos, o rendimento médio do processo, nas condições de trabalho especificadas, é de 3,5:1. Ou seja, para produzir 1 kg de batata frita tipo palha são necessários 3,5 quilogramas de matéria-prima, considerando-se um teor de sólidos de 18%.

Acerca do portfólio de produtos, a empresa comercializa embalagens de produto acabado em quatro tamanhos: 180 gramas, 500 gramas, 1 quilograma e 5 quilogramas.

4. Resultados e discussões

avançadas de produção"

Joinville, SC, Brasil, 10 a 13 de outubro de 2017.

A primeira etapa do ciclo PDCA é o processo de Planejamento. Nessa etapa, foi definido um cronograma conforme Andrade e Melhado (2003):

Localizar o problema → Estabelecer meta → Análise do fenômeno → Análise do processo → Elaborar plano de ação.

Designou-se uma equipe para elencar os problemas de maior impacto no processo produtivo, a fim de agir para neutralizar o de maior relevância do ponto de vista da qualidade.

Na localização do problema, foi utilizada a ferramenta auxiliar da qualidade denominada *Brainstorming*. Por meio dela, foi possível localizar alguns dos problemas inerentes ao processo.

Os problemas mais citados pela equipe relacionam-se diretamente com a questão financeira, de acordo com a Tabela 1.

Tabela 1 – Problemas Encontrados

PROBLEMAS	Salgamento incorreto da batata	
	Consumo excessivo de óleo	
	Matéria-prima não conforme	
	Produto final fora do padrão	
	Matéria-prima mal acondicionada	

Fonte: Elaborado pelo autor

Na reunião preliminar da equipe, devido à escassez de recursos e à restrição de tempo, utilizou-se a ferramenta GUT para determinar o problema de maior prioridade entre os citados, para que um plano de ação pudesse ser elaborado.

Conforme demonstrado na Tabela 2, produziu-se o modelo GUT de acordo com os graus de gravidade, urgência e tendência que determinado problema apresenta.

Tabela 2 – Levantamento do problema de maior prioridade (Modelo GUT)

Problema	Gravidade	Urgência	Tendência	Prioridade
Salgamento incorreto da batata	3	3	2	8
Consumo excessivo de óleo	5	5	4	14
Matéria-prima não conforme	2	2	1	5
Produto final fora do padrão	4	4	2	10

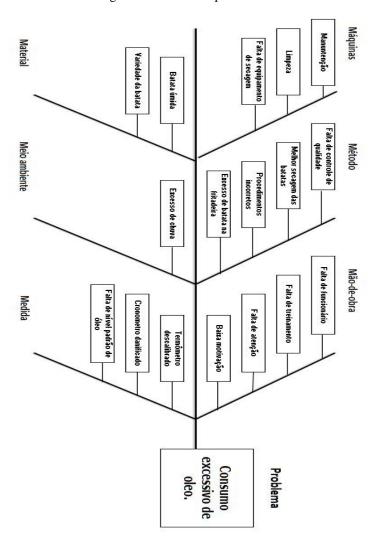
avançadas de produção"

Joinville, SC, Brasil, 10 a 13 de outubro de 2017.

Matéria-prima mal acondicionada

2

3


2

7

Fonte: Elaborado pelo autor

Dessa forma, conforme o cronograma apresentado anteriormente, após a localização exata do problema, pôde-se definir a meta para solucionar o problema de consumo excessivo de óleo. Assim, para uma tomada de ação visando solucionar o problema de maior influência, foi realizado um *brainstorming* para produção do diagrama de Ishikawa, conforme a Figura 2, visando obter a opinião de cada participante da equipe quanto às possíveis causas que influenciam a ocorrência de consumo excessivo de óleo.

Figura 2 – Causas do problema

Fonte: Elaborado pelo autor

Na etapa posterior do cronograma, análise do fenômeno e processo, cada causa potencial levantada no diagrama de Ishikawa, foi analisada e testada *in loco*, sendo que

avançadas de produção"

Joinville, SC, Brasil, 10 a 13 de outubro de 2017.

algumas causas receberam programação de ações e outras que não influenciavam diretamente no processo não receberam programação de ações corretivas, como se pode visualizar na Tabela 3.

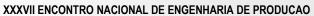
Tabela 3 – Análise das causas

Causa possível	Análise da Causa	
Manutenção das máquinas	Não há um plano de manutenção preventiva	
Limpeza das máquinas	A limpeza é programada de acordo com calendário do	
	fabricante	
Falta de equipamento de secagem	Necessária aquisição de soprador de ar quente para melhor	X
	secagem	
Falta de controle de qualidade	Necessário implementar controle de qualidade de produto e	X
	processo	
Melhor secagem das	Centrífuga não retira quantidade suficiente de água	X
batatas		
Procedimentos incorretos	O procedimento operacional padrão não é seguido	X
Excesso de batata na fritadeira	Não há padronização da quantidade de batata a ser frita	X
Falta de funcionário	Problema de mão de obra é recorrente	
Falta de treinamento	Devido à rotatividade elevada, não há treinamento	X
	adequado	
Falta de atenção ao manusear	Elevada quantidade de atividade para um mesmo	X
	funcionário	
Baixa motivação	Devido ao trabalho ser monótono, há baixa motivação	
Batata úmida	A batata é colocada na fritadeira ainda úmida	X
Variedade da batata	Baixa quantidade de fornecedores leva a variação no tipo	
	da matéria-prima	
Excesso de chuva	O excesso de chuva altera a qualidade da matéria-prima	
Termômetro descalibrado	Não houve problema com o termômetro no momento da	
	análise	
Cronômetro danificado	Ausência de cronômetro para medir o tempo de fritura	
Falta de nível padrão de óleo	O óleo é reposto de acordo com a necessidade	X

Fonte: Elaborado pelo autor

Desta forma, após o correto diagnóstico do problema, a próxima etapa do cronograma é elaborar o plano de ação, conforme Tabela 4.

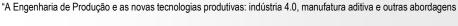
Tabela 4 – Plano de Ação

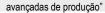

PLANO DE AÇÃO Elaborado em: 22/08/2016

PROJETO: Consumo excessivo de óleo

META: Reduzir o consumo de óleo de palma utilizado para fritura

Medida	Motivo	Procedimento	Local	Responsável	Prazo	Custo
(What)	(Why)	(How)	(Where)	(Who)	(When)	(How Much)


avançadas de produção"


Joinville, SC, Brasil, 10 a 13 de outubro de 2017.

1.Comprar	Centrifuga não retira	Realizar a compra com	Escritório	Diretor	Curto prazo	R\$10000,00
equipamento de	totalmente a umidade	um distribuidor de	Louis	2110101	Curto pruzo	11410000,00
secagem	da batata	equipamentos				(custo
20008000		- quipmini				aproximado)
2Implementar o	Não há controle de	Preparar um relatório	Produção	Administrador	Diariamente	Sem custo
controle de	qualidade do produto	com os índices que		de processos		adicional
qualidade do	em cada operação	influenciam no produto		produtivos		
produto e	unitária	e processos				
processos.						
						~
3. Aprimorar o	Batata úmida absorve	Mudar o método de	Produção	Encarregado	Imediatamente	Sem custo
processo de	mais óleo	lavagem tradicional		da produção		adicional
secagem		para lavagem na				
		centrifuga				
4. Garantir a	Tempo e temperatura	Instalar um cronometro	Produção	Encarregado	Imediatamente	Sem custo
execução do	de fritura não estão de	e ajustar corretamente a		da produção		adicional
procedimento	acordo com o POP	temperatura				
operacional						
padrão						
5 D 1 :	II.C.	D.C. : 1:1	E '// '	D: 4	G . t	G .
5. Padronizar a	Uniformizar e	Definir uma medida	Escritório	Diretor	Curto prazo	Sem custo
quantidade de	normalizar o aspecto	padrão				adicional
batata a ser frita	da batata					
6. Oferecer	Para diminuir os erros	Através do	Produção	Administrador	Médio prazo	Sem custo
treinamento aos	cometidos durante a	procedimento		de processos		adicional
funcionários	execução do processo	operacional padrão,		produtivos		
		mostrando o que deve				
		ser feito em cada etapa				
7. Instalar um	Tempo de fritura está	Adaptando o	Produção	Administrador	Curto prazo	R\$400,00
dispositivo sonoro	sendo ultrapassado	dispositivo ao	Trodução	de processos	Curto prazo	Κφ400,00
dispositivo solioio	sendo un apassado	cronometro de fritura		produtivos		(custo
		cronometro de iritara		produtivos		aproximado)
8. Padronizar a	Garantir que a	Definir e implementar	Produção	Encarregado	Imediatamente	Sem custo
quantidade de	fritadeira trabalhe	um nível padrão	_ 100000	da produção.		adicional
óleo	com quantidade de	am m. or paurao		sa produgao.		a a a a a a a a a a a a a a a a a a a
	óleo correta, evitando					
	desperdícios					
_		Fonte: Flaborado	polo outor			-

Fonte: Elaborado pelo autor

Joinville, SC, Brasil, 10 a 13 de outubro de 2017.

A segunda etapa do ciclo PDCA é o processo de execução. É por meio deste que a etapa anterior, de planejamento, é realizada. Com base no plano de ação elaborado na etapa citada e das ações contidas na análise do processo, podem-se executar as ações necessárias, tendo como meta a redução do consumo de óleo. Dessa forma, a etapa DO foi subdivida em duas fases principais: treinamento e execução. Na fase de treinamento, através de reuniões e palestras foram divulgadas as tarefas que necessitavam da participação de todos para que fossem executadas da melhor maneira possível. Na segunda fase, de execução, foi colocado em prática o plano de ação delegado a seus responsáveis. Com o propósito de se obter um controle mais apurado sobre o problema, foram realizadas medições regulares e adequadas sobre a produção e o consumo de óleo no período de 12 semanas.

Após a etapa DO, prosseguiu-se para a etapa de verificação (CHECK). A primeira atividade foi fazer o comparativo de resultados, usando dados coletados durante 12 semanas na fase anterior, com o propósito de analisar o nível de mitigação do problema e a eficácia das soluções propostas. Pode-se verificar esta análise pela Figura 3 e Tabela 5.

Consumo de Óleo (por semana) 140 120 100 • Caixas de Óleo 80 60 40 Produção de Batatas (sacos) 20 10 12 4 8 14

Figura 3 – Verificação da melhoria

Fonte: Elaborado pelo autor

Tabela 5 – Dados tabulados do diagrama de dispersão

Tempo (semanas)	Caixas de Óleo	Produção de Batatas (sacos)
0	24	92

avançadas de produção"

Joinville, SC, Brasil, 10 a 13 de outubro de 2017.

1	24	95
2	25	99
3	28	108
4	20	80
5	24	98
6	28	116
7	26	112
8	28	119
9	20	87
10	23	98
11	16	72
12	26	120

Fonte: Elaborado pelo autor

Apurando-se os dados, de acordo com Tabela 6 onde foram feitos os cálculos da razão entre os sacos de batatas e as caixas de óleo utilizadas, obteve-se uma redução no consumo de óleo de 17%. Com isso concluímos que a solução apresentada se configura como aceitável sob o ponto de vista da meta inicial. Tal afirmação pode ser comprovada na Figura 4.

Redução de consumo 30 18% 16% 25 14% Consumo de caixas de óleo redução de consumo 12% 20 10% 15 ■ Caixas de Óleo Redução 10 4% 2% 0 0% 5 7 9 12 4 8 10 11 6 Semanas

Figura 4 – Redução do consumo

Fonte: Elaborado pelo autor

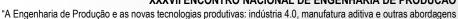
Tabela 6- Cálculo da porcentagem de redução

avançadas de produção"

Joinville, SC, Brasil, 10 a 13 de outubro de 2017.

Razão entre sacos de batata e caixas de óleo	% redução(razão1/razãoi)
3,83	0%
3,96	3%
3,96	3%
3,86	1%
4.00	4%
4,08	6%
4,14	7%
4,30	11%
4,25	10%
4,35	12%
4,26	10%
4,50	15%
4,62	17%

Fonte: Elaborado pelo autor


5. Conclusões

No presente trabalho, apresentou-se uma revisão bibliográfica a qual é notória a importância da melhoria contínua dos processos e produtos, e a maneira de alcançar o aprimoramento desejado. Também foi apresentado um modo para que o melhoramento fosse alcançado, através da aplicação do método PDCA e ferramentas como diagrama de causa e efeito, diagrama de dispersão, entre outras.

Como resultado, a implementação foi extremamente eficaz na resolução do problema na empresa estudada proporcionando padronização e melhoria do processo e, por consequência, aumentando a competitividade da empresa. A forma cíclica em que o PDCA apresenta-se culmina em um controle aumentado das ações e aponta possíveis falhas, possibilitando que possam sempre ser retificadas ou mesmo trocadas em um ciclo permanente.

Dessa forma, a aplicação da metodologia PDCA no presente trabalho proporcionou, somente com o auxílio e motivação dos funcionários, a redução de 17% do consumo de óleo bem como uma melhora na eficiência dos processos produtivos. Nota-se que o conhecimento dos tópicos básicos de gestão demonstrou ser fundamental para o sucesso do projeto.

avançadas de produção"

Joinville, SC, Brasil, 10 a 13 de outubro de 2017.

Após a implementação do plano de ação elaborado, conclui-se que as ações realizadas foram eficazes, visto que a meta definida no princípio do trabalho foi atingida, mesmo com as limitações encontradas, tais como: ausência de controle nas atividades rotineiras e a escassez de treinamento dos encarregados de produção.

Por fim o ciclo PDCA foi finalizado e as medidas adotadas para a resolução do problema devem ser monitoradas constantemente visando à manutenção da melhoria já obtida.

Como proposições futuras, pode-se citar a resolução dos demais problemas levantados durante o brainstorming, através da aplicação de outras ferramentas a fim de minimiza-los. Outra alternativa é o acompanhamento e treinamento dos colaboradores para que ajam como partes integrantes do processo.

REFERÊNCIAS

ANDRADE, F; MELHADO, S. O método de Melhorias PDCA. Disponível em http://publicacoes.pcc.usp.br/ PDF/BTs_Petreche/BT371-%20Andrade.PDF>. Acesso em: 25 de setembro de 2016

CAMPOS, V.F. T.Q.C. - Controle da Qualidade Total (no estilo japonês). Belo Horizonte. Fundação Christiano Ottoni. Escola de Engenharia, 1992.

CAMPOS, V. F., Gerenciamento pelas diretrizes. Belo Horizonte: Editora de Desenvolvimento Gerencial, 1996.

CAMPOS, V. F.. Gerenciamento da rotina do trabalho do dia-a-dia. Belo Horizonte: Editora de Desenvolvimento Gerencial, 2001.

GARCIA, Eduardo Alfonso Cadavid. Manual de sistematização e normalização de documentos técnicos. São Paulo: Atlas, 1998.

MELO, C. P. Caramori, E. J. **PDCA Método de melhorias para empresas de Manufaturas** – versão 2.0. Belo Horizonte: Fundação de Desenvolvimento Gerencial, 2001.

"A Engenharia de Produção e as novas tecnologias produtivas: indústria 4.0, manufatura aditiva e outras abordagens

avançadas de produção"

Joinville, SC, Brasil, 10 a 13 de outubro de 2017.

PEREIRA, R. C. Explorando Conceitos e Perspectivas da Meta-Análise em Marketing. Anais do Enanpad, 2004.

SOUSA, G. Vai um PDCA aí? Em época de crise ou bonança esse método sempre ajuda. http://180graus.com/drops-de-marketing/vai-um-pdca-ai-em-epoca-de-crise-ou-bonanca-esse-metodo-sempre-ajuda Acesso em 09/10/16

WERKEMA, M.C.C. **As Ferramentas da Qualidade no Gerenciamento de Processos**. Belo Horizonte: Fundação Christiano Ottoni, 1995.

27